

DOI Target Solution Reference
Architecture

Service Oriented Integration Center of Excellence
Chief Technology Officer Council (CTOC)

U.S. Department of the Interior
Office of the Chief Information Officer

1849 C Street NW
Washington, DC 22240

Version 1.2
January 24, 2007

 DOI Target Solution Reference Architecture

 ii 11/24/2010

Revision History

Version Date Author Reviewer Comments

0.1 10/22/04 CTOC Original name – “DOI Solution

Architecture”

0.2 5/22/06 CTOC Completely new sections and
reorganized

1.0 5/26/06 CTOC Incorporated all comments from CTOC

reviewers

1.1 7/21/06 CTOC Incorporated comments from IEA
reviewers and added an Executive
Summary

1.2 1/24/07 CTOC Changed name to DOI Target Solution

Reference Architecture

 DOI Target Solution Reference Architecture

 iii 11/24/2010

Executive Summary

The DOI Target Solution Reference Architecture (TSRA) is the target logical solution

architecture and service-oriented application reference architecture for the Department of the

Interior (DOI). TSRA is intended to help the department and its bureaus attain their business

needs using cost effective, usable, and maintainable enterprise applications. DOI plans to

implement this unified solution architecture throughout the enterprise to achieve a flexible

business model that meets the customers‘ demands with greatly reduced cost and much improved

efficiency.

This document provides an architecture overview and policy for DOI use of solution architecture

(SA) for information technology (IT) applications. It provides the service-oriented architecture

framework and the IT building blocks upon which the future DOI complete solution will be

developed. The TSRA summarizes the main conceptual elements and the relationships between

these elements to aid a clear understanding of the DOI target architecture. It strives to achieve

the following:

 Outline the enterprise solution architecture that will help the department and its bureaus

achieve their business goals and IT Strategic Plans

 Facilitate early validation of the solution architecture‘s impact on DOI

 Define the role of solution architecture in making the DOI enterprise architecture more

service oriented, creating more reusable assets

 Create a communication medium for the stakeholders: management, sponsors, users,

architects, developers, and implementers

 Establish criteria and standards for product selection

 Provide a template for the vendors to validate their proposed solutions

 Provide a continuing path of analysis for EA blueprints

This TSRA document provides the relationship of the solution architecture (SA) with business,

data, application, technology, . It also explains how the

solution architecture is driven by DOI business needs. Solution architecture and its associated

application architecture address multiple development and deployment platforms. It applies

Enterprise Application Integration (EAI) techniques in the application architecture. Consistent

use of the TSRA will allow DOI to smoothly transition to a service-oriented architecture (SOA).

Appendix A of this document presents a Service Oriented Architecture (SOA) roadmap for DOI

and discusses SOA patterns, . Platform-specific reference

architectures are presented in the .NET Application Reference Architecture and J2EE

Application Reference Architecture documents.

 DOI Target Solution Reference Architecture

 iv 11/24/2010

Table of Contents

1 Introduction ... 9

1.1 Purpose .. 10

1.1.1 Scope ... 11

1.2 Audience ... 11

1.3 Document Organization .. 11

1.4 References ... 12

2 Architecture Overview .. 13

2.1 Enterprise Architecture ... 13

2.2 Solution Architecture Principles ... 20

2.3 Constituent Architecture Domains .. 21

2.3.1 Business Architecture ... 21

2.3.2 Data Architecture .. 22

2.3.3 Application Architecture ... 22

2.3.4 Technology Architecture .. 22

2.3.5

2.4 Architectural Styles and Patterns .. 23

2.5 Service-Oriented Architecture Overview ... 25

2.6 Solution Objectives and Scope ... 25

3 Business Architecture ... 27

3.1 Business Description ... 27

3.2 Solution Overview Diagram ... 27

3.3 Use Case Models... 28

3.4 Functional Requirements Document... 31

3.5 Business, Integration and Composite Patterns .. 31

3.5.1 Business Patterns .. 32

3.5.2 Integration Patterns ... 33

3.5.3 Composite Patterns ... 34

4 Data Architecture .. 37

4.1 Subject Areas and Information Classes .. 37

4.2 Conceptual and Logical Entities ... 37

4.3 Entity Relationship Diagrams ... 38

4.4 Object Role Model Diagrams ... 38

5 Application Architecture ... 39

5.1 Application Patterns .. 39

5.2 Non-Functional Requirements .. 42

5.3 Architectural Reference Models ... 44

5.3.1 Reference Model Concepts ... 45

5.3.2 5-Layer Model .. 48

5.3.3 Architectural Elements.. 49

5.3.4 Integration Capabilities ... 54

 DOI Target Solution Reference Architecture

 v 11/24/2010

5.3.5 Multi-channel Target Architecture ... 56

5.4 Application Interface Types .. 59

5.4.1 Thin Client .. 59

5.4.2 Rich or Smart Client ... 60

5.4.3 Enterprise Remote Access .. 61

5.5 Service-Oriented Architecture .. 61

5.5.1 Enterprise Service Bus .. 64

5.5.2 Service-Oriented Architecture at DOI .. 67

5.6 Component Model .. 68

5.6.1 Component Relationship Diagram .. 70

5.6.2 Component Description .. 71

5.6.3 Component Interaction Diagram... 72

5.7 Operational Model .. 72

5.7.1 J2EE Application Reference Model.. 77

5.7.2 .NET Application Reference Model Overview .. 77

5.8 Architectural Decisions ... 77

5.9 Test-Driven Development ... 78

5.10 Mapping the SRM to Solution Functionality .. 79

6 Technology Architecture... 81

8 Using Solution Architecture ... 85

9 Appendix A – Glossary ... 88

9.1 Terms and Definitions... 89

10 Appendix B – Solution Architecture Artifacts .. 93

11 Appendix C – Service Oriented Architecture Roadmap ... 94

11.1 Rollout Strategy .. 94

11.1.1 Pilot Project Phase .. 94

11.1.2 First Adopter Phase ... 95

11.1.3 Phased Implementation Approach .. 98

11.1.4 Rollout Summary .. 99

11.1.5 SOA Maturity Stages .. 100

11.2 Technology and Standards .. 101

11.2.1 Technical Reference Model .. 101

11.2.2 Web Service Standards ... 102

11.2.3 Other Standards ... 103

11.3 The SOA Platform .. 103

 DOI Target Solution Reference Architecture

 vi 11/24/2010

11.3.1 Communications Service Bus ... 104

11.3.2 Foundation Services .. 104

11.3.3 Data Integration .. 105

11.3.4 Application Integration ... 106

11.3.5 Management .. 106

11.3.6 Development ... 107

11.4 Enterprise Capabilities .. 107

11.5 SOA / ESB Patterns .. 110

11.5.1 Service- and Event-Routing Pattern .. 111

11.5.2 Protocol Switch Pattern... 112

11.5.3 Proxy or Gateway Pattern ... 113

11.5.4 Event Distribution Pattern... 114

11.5.5 Service Transformation Pattern .. 115

11.5.6 Matchmaking Pattern .. 116

11.6

 118

11.7 Governance and Organization... 119

11.8 SOA Governance Best Practices ... 120

11.9 DOI Timeline .. 123

 DOI Target Solution Reference Architecture

 vii 11/24/2010

Table of Exhibits

Exhibit 1-1: Relationship of EA to SA ... 9

Exhibit 2-1: IEA Methodology for Business Transformation ... 14

Exhibit 2-2: BDATS Architecture ... 16

Exhibit 2-3: Applying the MBT ... 17

Exhibit 2-4: Federal Enterprise Architecture (FEA) Reference Models 18

... 19

Exhibit 2-6: Solution Architecture builds from DOI EA Strategy and Planning 20

Exhibit 2-7: Layered Asset Model ... 24

 28

Exhibit 3-2: Use Case Model Example .. 29

Exhibit 3-3: Example Actor Definition Table ... 29

Exhibit 3-4: Example Use Case Description Template ... 30

Exhibit 3-5: Business and Integration Patterns .. 31

Exhibit 3-6: Business Pattern Selection Summary .. 32

Exhibit 3-7: Solution Overview Diagram with Business Patterns ... 33

Exhibit 3-8: Integration Pattern Selection Summary ... 33

Exhibit 3-9: Solution Overview Diagram with Integration Patterns ... 34

Exhibit 3-10: Table of Composite Patterns .. 34

Exhibit 5-1: DOI Business Self-Service Runtime Pattern Application Decomposition Tier 40

Exhibit 5-2: DOI Information Aggregation Multi-Step Application Runtime Pattern 40

Exhibit 5-3: DOI Extended Enterprise: Manage Public & Private Processes 41

Exhibit 5-4: DOI Non-functional Requirement ... 43

Exhibit 5-5: Architectural Reference Model.. 45

Exhibit 5-6: 5-Layer Model Positioned in the Reference Model ... 48

Exhibit 5-7: Improved 5-Layer Model ... 49

Exhibit 5-8: Service Type Hierarchy ... 52

Exhibit 5-9: Multi-channel Target Architectural Elements ... 56

Exhibit 5-10: Mediator-Service Composition Interaction ... 57

Exhibit 5-11: Application Interface Types .. 59

Exhibit 5-12: Thin Client Interaction Style ... 60

Exhibit 5-13: Rich or Smart Client Implementation .. 61

Exhibit 5-14: High-level Aspects of SOA .. 62

Exhibit 5-15: High-level Conceptual Component Relationship Diagram 70

Exhibit 5-16: Example Component Relationship Diagram ... 71

Exhibit 5-17: Example High-level Component Interaction Diagram .. 72

Exhibit 5-18: Example Operational Model Diagram (J2EE Conceptual Level) 75

 DOI Target Solution Reference Architecture

 viii 11/24/2010

Exhibit 5-19: Example Operational Model Diagram (.NET Conceptual Level) 76

Exhibit 5-20: Example Node Description Table .. 76

Exhibit 5-21: Architecture Decision Table Form .. 78

Exhibit 5-22: SRM Mapped to SOD .. 80

Exhibit 6-1: On Demand Operating Environment ... 82

Exhibit 8-1: Architecture Driven Design ... 85

Exhibit 10-1: DOI Solution Architecture Artifacts .. 93

Exhibit 11-1: Sample SOA Rollout Timeline .. 96

Exhibit 11-2: Phased SOA Capability Attainment .. 98

Exhibit 11-3: SOA Platform .. 104

Exhibit 11-4: Major Issues of a Service Reuse Program ... 108

Exhibit 11-5: Service- and Event-Routing Pattern .. 111

Exhibit 11-6: Protocol Switch Pattern ... 112

Exhibit 11-7: Proxy or Gateway Pattern .. 113

Exhibit 11-8: Event Distribution Pattern ... 114

Exhibit 11-9: Service Transformation Pattern ... 115

Exhibit 11-10: Matchmaking Pattern ... 116

Exhibit 11-11: SOA Governance ... 122

 DOI Target Solution Reference Architecture

Chapter 1 – Introduction 9 11/24/2010

1 Introduction

The DOI Target Solution Reference Architecture (TSRA) is the target logical solution

architecture and service-oriented application reference architecture for the Department of the

Interior (DOI). TSRA is intended to help the department and its bureaus attain their business

needs using cost effective, usable, and maintainable enterprise applications. DOI plans to

implement this unified solution architecture throughout the enterprise to achieve a flexible

business model that meets the customers‘ demands with greatly reduced cost and much improved

efficiency.

The DOI has developed and is implementing the Interior Enterprise Architecture (IEA) and is

currently establishing the application architecture that complies with the IEA. As part of this

effort, DOI is aligning with the TSRA the architecture domains that contribute to the IEA. This

TSRA document provides the relationship of the solution architecture (SA) with business, data,

application, technology, ins. It also explains how the solution

architecture is driven by DOI business needs. Solution architecture and its associated application

architecture address multiple development and deployment platforms. It applies Enterprise

Application Integration (EAI) techniques in the application architecture. Consistent use of the

TSRA will allow DOI to smoothly transition to a service-oriented architecture (SOA).

Exhibit 1-1: Relationship of EA to SA

This document presents a unified set of concepts that apply across all business applications

within DOI. Adhering to these concepts will yield consistent and interoperable applications,

 DOI Target Solution Reference Architecture

Chapter 1 – Introduction 10 11/24/2010

enabling a service-oriented enterprise architecture. Ancillary documents provide scenarios,

mappings, technologies, and other details. The ancillaries include Interior Enterprise

Architecture and the J2EE and .NET Application Reference Architecture documents. Isolating

the rapidly changing technologies into their respective documents allow them to be updated

frequently and independently of this core architecture document. It is important to note that the

principles and concepts presented here are not affected by technological changes.

This document is presented at a higher level of abstraction than the J2EE and .NET reference

architecture documents. The reference architecture documents deal with how these technology

standards impact the application architecture, concentrating on the physical technology concepts

of specific J2EE and .NET products. This document concentrates on the logical building blocks

of solutions and their applications. Its primary focus is on the structure of solutions and their

resultant applications based on a logical partitioning of roles and responsibilities of the

applications and infrastructure. Intelligently structuring applications allows a higher degree of

integration with legacy systems, shorter cycle times, and flexibility to deal with rapidly changing

technologies. This approach clearly positions the TSRA to support a service-oriented

architecture.

1.1 Purpose

This document provides an architecture overview and policy for DOI use of solution architecture

(SA) for information technology (IT) applications. It provides the service-oriented architecture

framework and the IT building blocks upon which the future DOI complete solution will be

developed. The TSRA summarizes the main conceptual elements and the relationships between

these elements to aid a clear understanding of the DOI target architecture. It strives to achieve

the following:

 Outline the enterprise solution architecture that will help the department and its bureaus

achieve their business goals and IT Strategic Plans

 Facilitate early validation of the solution architecture‘s impact on DOI

 Define the role of solution architecture in making the DOI enterprise architecture more

service oriented

 Create a communication medium for the stakeholders: management, sponsors, users,

architects, developers, and implementers

 Establish criteria and standards for product selection

 Provide a template for the vendors to validate their proposed solutions

 Provide a continuing path of analysis for EA blueprints

The TSRA is intended to migrate DOI towards a service-oriented architecture (SOA), yielding

the following benefits:

 More agility

 Tighter integration

 Higher quality

 Faster implementation

 DOI Target Solution Reference Architecture

Chapter 1 – Introduction 11 11/24/2010

 Better skill leverage

In summary, solution architecture sets the context for creating DOI applications. Each sub-

architecture provides a specific context to inform the overall application design. Business and

application patterns provide common solutions to problems found across DOI applications. The

reference architectures describe how to transform the application architecture for an

implementation using a specific technology platform. They also give each application a

significant head start by providing standard component designs so that the developers can

concentrate on meeting the unique business requirements of the specific application, instead of

re-inventing the wheel each time. Applications that comply with the TSRA will not only meet

DOI business needs, they will be flexible, consistent, and efficient.

1.1.1 Scope

This document defines the DOI target solution architecture, which supports an application‘s

business, data, application , technology , While it describes the

application architecture in detail, discussions of the other four architectures are beyond its scope.

1.2 Audience

This document is intended mainly for senior technical managers at DOI to foster a common

understanding on IT governance. It may also benefit the requirements analysts, enterprise

architects, solution architects, developers, and project managers who participate in solution and

application development.

1.3 Document Organization

The document starts with an overview of enterprise and application architecture concepts and

then describes the details of the sub-architectures. This chapter provides an introduction as well

as the purpose, scope, audience, and organization of the document.

Chapter 2, Architecture Overview, presents the context of solution and application architecture

within enterprise architecture. The following five chapters present each of the sub-architectures.

Chapter 3, Business Architecture, discusses the solution overview, use cases, and business needs,

requirements, and patterns.

Chapter 4, Data Architecture, applies the concepts Subject Areas, Information Classes, and

Conceptual and Logical Entities in the DOI Data Reference Model (DRM) to the TSRA. It also

presents Entity Relationship Diagrams and Object Role Model diagrams.

Chapter 5, Application Architecture, begins with application patterns and non-functional

requirements. It discusses architectural reference models, application interface types, and

service-oriented architecture. It presents component and operational models, and then provides a

methodology for making architectural decisions. It also discusses test-driven development and

mapping the DOI Service Component Reference Model (SRM) to solution functionality.

 DOI Target Solution Reference Architecture

Chapter 1 – Introduction 12 11/24/2010

Technology Architecture and the DOI Technology Reference Model (TRM) are reviewed in

Chapter 6.

A brief synopsis of the steps that are taken when applying the TSRA is presented in Chapter 8,

Using Solution Architecture.

Appendix A has a glossary and a list of abbreviations and acronyms used in the TSRA.

Appendix B contains a list of all the artifacts discussed in the TSRA. A roadmap with

pragmatic, concrete steps for transforming DOI applications to the target service-oriented

architecture is presented in Appendix C.

1.4 References

[1] Patterns for e-business: A Strategy for Reuse, IBM Press, 2001

[2] Service-Oriented Architecture: Concepts, Technology, and Design, Thomas Erl, Prentice

Hall, 2006

[3] Enterprise Solution Patterns Using Microsoft .NET Version 2.0, Microsoft Press, 2003

[4] Application Architecture for .NET: Designing Applications and Services, Microsoft Press,

2002

[5] Improving .NET Application Performance and Scalability, Microsoft Press, 2004

[6] Smart Client Architecture and Design Guide, Microsoft Press, 2005

[7] Data Patterns, Microsoft Press, 2005

[8] Application Interoperability: Microsoft .NET and J2EE, Microsoft Press, 2004

[9] Information Modeling and Relational Databases: From Conceptual Analysis to Logical

Design, Terry Halpin, Morgan Kauffman, 2001

[10] ―Inside Patterns‖, Douglas Schmidt, Siemans AG, 1998, 1999

[11] ―DOI Solution Architecture.doc‖ (v0.1), CTOC, 10/22/2004 [Version 0.1 of this

document]

[12] ―IBM e-business Pattern Integration White Paper‖, U.S. Patent and Trademark Office,

11/25/2002

[13] ―DOI .NET Reference Architecture‖ (v0.1), CTOC

[14] ―DOI J2EE Reference Architecture‖ (v0.1), CTOC

[15] DOI Technology Reference Model v3.1 (TRM), CTOC, 5/1/2006

[16] Services and Component Based Architectures: A Strategic Guide for Implementing

Distributed and Reusable Components and Services in the Federal Government, Version

3.5, Federal CIO Council, January 2005

[17] DOI Conceptual Architecture, IEA, May 2005

[18] Methodology for Business Transformation, IEA

[19]

[20]

http://www.whitehouse.gov/omb/egov/documents/SCBA_Whitepaper_Chapter_1.pdf
http://www.whitehouse.gov/omb/egov/documents/SCBA_Whitepaper_Chapter_1.pdf
http://www.doi.gov/ocio/architecture/documents/conceptual_architecture_final.doc
http://www.doi.gov/ocio/architecture/mbt/guidance.htm

 DOI Target Solution Reference Architecture

Chapter 2 – Architecture Overview 13 11/24/2010

2 Architecture Overview

This document uses the Interior Enterprise Architecture (IEA) documents and Patterns for e-

Business [1] industry best practices to derive the DOI Solution Architecture (TSRA). The TSRA

is also based on DOI‘s and the bureaus‘ strategy to standardize on commercial off-the-shelf

(COTS) software components, to leverage existing J2EE and .NET technologies, and to integrate

seamlessly with the existing infrastructure. One of the important goals of the TSRA is for DOI

to migrate to a service-oriented architecture (SOA), gradually, with little or no disruption to the

existing business operations. Additionally, it aims to promote cooperation and interoperation

across bureaus and with other Federal Government agencies using secure, multi-channel

solutions built on standards-based reusable services.

DOI and its Bureaus are leveraging e-Government strategies to make themselves more agile.

This Solution Architecture (SA) initiative is a key step in improving DOI‘s customer service.

The key business drivers behind this initiative are as follows:

 Provide consistent human and application interfaces throughout DOI

 Provide services that help reduce training costs

 Provide interfaces that are easy to use

In addition, the department-wide initiative supports the goal of the Office of the Chief

Information Officer (OCIO) to improve DOI‘s internal and external business practices using

electronic services. It promotes solution consistency and simplifies vendor selection.

2.1 Enterprise Architecture

Enterprise Architecture (EA) is defined as a process and framework that leads to the

development, implementation, maintenance, and use of a ―blueprint‖ that explains and guides

how an organization‘s business practices, information technology (IT), and information

management elements work together to accomplish the mission. The EA must take into account

the organization‘s business needs, performance measures, information, workflows, and

processes. It must not be a set of technical decisions made in isolation of these other elements.

In order to create the DOI EA, the Interior Enterprise Architecture (IEA) team leverages the

Methodology for Business Transformation (MBT).

The MBT, shown in the visual below, consists of steps for creating a Modernization Blueprint

for a business area, and then steps for implementing the business transformation outlined in the

Modernization Blueprint. Within the first five steps of the MBT, the analysts are engaged in

analysis of the business area‘s stakeholders, strategy, processes, and legacy technologies.

Additionally, the analysts are working with the solution architects to develop a high level

solution architecture to include in the Modernization Blueprint. Ultimately, the Modernization

Blueprint include an assessment of the current state and recommendations for an improved

performance, process, products, and solutions environment for the business area in focus.

 DOI Target Solution Reference Architecture

Chapter 2 – Architecture Overview 14 11/24/2010

Exhibit 2-1: IEA Methodology for Business Transformation

More information about the MBT can be found at www.doi.gov/ocio/architecture/mbt. The

MBT is currently being extended to version 1.5 which will include more overt connections

between the Enterprise Architecture and Solution Architecture teams and their artifacts.

The scope of EA is the entire enterprise. The intent of EA (and its sub-architectures) is to

describe and manage all of the enterprise business practices and applications that provide

business solutions meeting the enterprise goals. With regard to EA, the DOI is creating the

Interior Enterprise Architecture (IEA), envisioned to optimize service delivery by helping to

effectively integrate and leverage existing investments across the DOI. The IEA is aimed at

supporting investment decisions, improving the management of IT assets, and establishing a plan

for transitioning toward target architectures within the organization.

Solution Architecture plays an important role in achieving these goals by enabling the transition

to a Service-Oriented Architecture (SOA). The enterprise solution and application architecture

are critical in the optimization of both hardware and software resources. One way that they do

this is by providing a layer of abstraction between the logical solution and application

architecture (as described in this document) and the physical technical architecture (described in

the Reference Architectures [13], [14] and the Technical Reference Model (TRM) [15]). In other

words, the solution and application architectures provide a logical perspective of an application

within the context of its solution, describing what different elements of an application do in

 DOI Target Solution Reference Architecture

Chapter 2 – Architecture Overview 15 11/24/2010

terms of their roles and responsibility. In contrast, the technology architecture provides the

physical perspective of the application describing how those logical elements are constructed and

connected using specific technologies within its solution. This separation provides some

important benefits:

 Allows similar applications to be deployed on the same set of hardware resources

because the structure of the solutions and applications is consistent.

 Allows the same application architecture to be applied across a variety of technology

platforms, such as .NET and J2EE and still have a consistent structure.

 Allows optimization of the DOI data center strategy and its business infrastructures

 Allows for the EA analysts to engage the business community directly and develop a

target business vision and agreement on the conceptual target systems environment

 Allows the SA analysts to work from business agreements generated in Steps 1-3 of the

MBT and to develop a solutions architecture in Step 4 of the MBT in the Modernization

Blueprint

The separation of the logical and physical aspects of the architecture is an example of the

fundamental architectural principle of separation of concerns, in other words, separating issues

to keep independent things independent (uncoupled from each other). The separation of

concerns is applied to the enterprise to identify five separate constituent architectures that make

up SA, illustrated in Exhibit 2-2. This separation of concerns means that each of the different

aspects of the enterprise can be represented by an architecture that addresses its particular

concerns. By being more focused, a particular architecture can be more effective at

communicating to a particular audience.

 DOI Target Solution Reference Architecture

Chapter 2 – Architecture Overview 16 11/24/2010

Exhibit 2-2: BDATS Architecture

Solution Architecture

Business

Architecture

Data Architecture

Application Architecture

Technology Architecture

S
o
lu

tio
n
 A

rc
h
ite

c
tu

re

S
o
lu

ti
o
n
 A

rc
h
it
e
c
tu

re

In
te

g
ra

te
d
 R

o
a
d
m

a
p
s

The TSRA identifies five primary constituent architecture domains. Collectively known as

"BDATS", these sub-architectures represent the separate EA viewpoints of Business

Architecture, Data Architecture, Applications Architecture, Technology Architecture and

1. The Business Architecture domain defines the DOI's business and the information used in

conducting business. It addresses functions and processes performed and services

provided.

2. The Data Architecture domain defines the major kinds of data needed to support the

DOI's business.

3. The Applications Architecture domain defines the structure of applications needed to

manage the data and support the DOI's business functions.

4. The Technology Architecture domain defines the technology platforms needed to provide

an appropriate quality of service and secure environment for the applications that manage

the data and support the business functions.

5.

 DOI Target Solution Reference Architecture

Chapter 2 – Architecture Overview 17 11/24/2010

6. Solution Architecture defines the end-to-end IT solution to a particular business

problem. It covers both functional aspects as well as operational aspects. This is the

basic foundation tying the rest of architectures together to provide the right solutions for

solve DOI business challenges.

DOI‘s features a segmented enterprise architecture that includes the architecture domains

mentioned above. Each segment in the DOI EA equates to a business area within the DOI

enterprise. Within each business area or segment, the MBT is used to develop the information

that is necessary to transform that business area. All of this information can be mapped back to

the architecture domains listed above. Specifically, the following exhibit shows the line of sight

that illustrates how information is developed and synthesized on the way to developing a target

solutions architecture.

Exhibit 2-3: Applying the MBT

Each solution-level project needs to be viewed in terms of its relationship to the IEA. The IEA

can be used to position individual solution-level projects within the larger DOI enterprise

 DOI Target Solution Reference Architecture

Chapter 2 – Architecture Overview 18 11/24/2010

context. This practice conforms to the architectural principle that consideration of solution

aspects within the next larger context, so that relationships among architectural elements can be

fully understood and appreciated, is essential to the efficient and effective management of

Information Technology. Connections and concepts in the IEA can be mapped to activities

carried out and artifacts created and used in the DOI/Bureaus Information System Development

Lifecycle Management (SDLM) processes.

The IEA relates FEA reference models (Exhibit 2-4) to DOI Enterprise Architecture. Each FEA

reference model provides an OMB prescribed taxonomy for the overall Enterprise Architecture.

For example, the BRM is a taxonomy for business lines and functions within the enterprise ,

while the SRM is a taxonomy for services within the enterprise.

Exhibit 2-4: Federal Enterprise Architecture (FEA) Reference Models

Business Reference Model (BRM)

• Lines of Business
• Agencies, Customers, Partners

Service Component Reference Model (SRM)

• Service Layers, Service Types
• Components, Access, and Delivery Channels

Technical Reference Model (TRM)

• Service Component Interfaces, Interoperability
• Technologies, Recommendations

Data Reference Model (DRM)

• Business-focused data standardization
• Cross-Agency Information exchanges

Performance Reference Model (PRM)

• Government-Wide Performance Measures and Outcomes
• Line-of-Business-Specific Performance Measures and Outcomes

Federal Enterprise Architecture (FEA) Reference Models

C
o

m
p

o
n

e
n

t-B
a

s
e

d
 A

rc
h

ite
c
tu

re
s

B
u

s
in

e
s
s
-D

riv
e

n
 A

p
p

ro
a

c
h

(C
itiz

e
n

-C
e

n
te

re
d

 F
o

c
u

s
)

Business Reference Model (BRM)

• Lines of Business
• Agencies, Customers, Partners

Service Component Reference Model (SRM)

• Service Layers, Service Types
• Components, Access, and Delivery Channels

Technical Reference Model (TRM)

• Service Component Interfaces, Interoperability
• Technologies, Recommendations

Data Reference Model (DRM)

• Business-focused data standardization
• Cross-Agency Information exchanges

Performance Reference Model (PRM)

• Government-Wide Performance Measures and Outcomes
• Line-of-Business-Specific Performance Measures and Outcomes

Federal Enterprise Architecture (FEA) Reference Models

C
o

m
p

o
n

e
n

t-B
a

s
e

d
 A

rc
h

ite
c
tu

re
s

B
u

s
in

e
s
s
-D

riv
e

n
 A

p
p

ro
a

c
h

(C
itiz

e
n

-C
e

n
te

re
d

 F
o

c
u

s
)

The IEA maps the FEA Business Reference Model (BRM) to DOI systems and DOI activity

based costing codes. The Department Enterprise Architecture Repository (DEAR) and the

Bureau Enterprise Architecture Repository (BEAR) provide the detail mapping description for

each of the FEA reference models and how the relate to DOI investments, systems, and business

activities. Throughout the MBT and throughout the development of the solution architecture,

there are DEAR reports that are valuable inputs for the analysts as they do their work. These

DEAR reports are available through the IEA website.

The Federal Enterprise Architecture (FEA) Business Reference Model identifies lines of

business and some of these lines of business will be studied as part of the DOI Enterprise

Architecture. For instance, the Law Enforcement line of business in the FEA BRM has been

 DOI Target Solution Reference Architecture

Chapter 2 – Architecture Overview 19 11/24/2010

studied as part of the DOI EA and a Modernization Blueprint for this line of business has been

created The following visual represents the lines of business and sub-functions from the FEA

BRM that are active in the Department of the Interior and that will be affected by the

Exhibit 2-6 identifies the relationship between Department and Bureau Enterprise Architecture

and the SA for a specific project.

 DOI Target Solution Reference Architecture

Chapter 2 – Architecture Overview 20 11/24/2010

Exhibit 2-6: Solution Architecture builds from DOI EA Strategy and Planning

2.2 Solution Architecture Principles

Principles establish the basis for a set of rules and behaviors for an organization. There are

principles that govern the IEA process and principles that govern the implementation of the DOI

Target Solution Reference Architecture (TSRA). Architectural principles for the IEA process

affect development, maintenance, and use of the IEA. These principles are documented in the

DOI Conceptual Architecture Document [17]. TSRA principles for implementation establish the

first tenets and related decision-making guidance for designing and developing information

systems. The Solution and Application Architectures will encompass the following principles:

 Flexibility
The DOI will implement service-based application software that is independent of

hardware platforms, that is loosely coupled to infrastructure services, that places

reasonable demands on networks used for communication (i.e., minimizes traffic), and

that places minimal demands on users of the application.

 Efficiency

The DOI will create designs that reduce cost and implementation time, minimize human

intervention to preserve continuous and reliable operation, and reduce user-training

requirements. The architecture promotes user interfaces that optimize the nature,

efficiency, and effectiveness of the human operator.

 Usability

The DOI will implement easy-to-use solutions, accessible by people with dTSRAbilities,

which solve DOI business needs and provide needed information to the public.

http://www.doi.gov/ocio/architecture/documents/conceptual_architecture_final.doc

 DOI Target Solution Reference Architecture

Chapter 2 – Architecture Overview 21 11/24/2010

 Balance

 Reuse
The TSRA, by creating standard application structure and leveraging SOA, provides the

foundation for the reuse of assets, including the solution architecture; business, data,

application, and run-time patterns; and business and infrastructure services. Reuse of

assets is key in reducing cost by eliminating redundant systems and promoting best

practices across the department.

2.3 Constituent Architecture Domains

The goal of Solution Architecture (SA) is to structure every application so that it is cost

effective, usable, and maintainable, and so that it meets both its functional and non-functional

requirements. Enterprise Architecture, on the other hand, aims to achieve standardization,

interoperability and sharing across all the business processes and IT applications within the

enterprise. These are different, but complementary, goals. Hence, the evolution of the two

architectures must be coordinated.

Consider this example. Each bureau within DOI builds applications that fulfill the respective

business needs. If, overtime, we discover that many applications provide web interfaces to

existing systems, it would be more sensible to structure the applications in a like manner from

the start. This would reduce complexity and increase the opportunity for software and hardware

reuse. Additionally, if all our applications have a common requirement to send paper mails, we

would prefer a common mechanism for printing and mailing. Furthermore, there will eventually

be numerous applications within the enterprise that we would like to interoperate and share

information. The most effective way to achieve these is to align all solution architectures to the

overarching enterprise architecture.

The IEA has defined its reference architectures and the Methodology for Business

Transformation (MBT) to identify DOI‘s business needs and create plans to address them,

including what solutions should be implemented. The TSRA ensures these solutions are aligned

to the enterprise architecture. As shown in Exhibit 2-2, SA encompasses elements of the

Business, Data, Application, Technology, The

interaction of these architectures within SA is discussed in the next five subsections. For more

information on the IEA, see http://www.doi.gov/ocio/architecture/fea.htm.

2.3.1 Business Architecture

Solution Architecture uses Business Architecture to ensure that DOI business needs are

addressed correctly and completely by every solution. Business Architecture, as defined in the

IEA, identifies DOI business domains, practices and policies and is developed by using the MBT

to create a Modernization Blueprint.. Each solution will address a particular need of one or more

Lines of Business. Business Architecture also helps determine the appropriate business patterns

http://www.doi.gov/ocio/architecture/fea.htm

 DOI Target Solution Reference Architecture

Chapter 2 – Architecture Overview 22 11/24/2010

for a solution, which in turn affect the choice of application patterns. For more information

about the DOI BRM, see http://www.doi.gov/ocio/architecture/fea.htm#brm.

2.3.2 Data Architecture

Solution Architecture uses Data Architecture to ensure that an application‘s data is complete,

standardized, and can be accessed and reused across the enterprise (DOI). To this end, data in

each DOI application should conform or map to DOI DRM Entities and Attributes. While this

may not be feasible in large-scale COTS implementations, the mapping between main

information classes must be done and mapping to important entities should be considered. For

more information about the DOI DRM, see http://www.doi.gov/ocio/architecture/fea.htm#drm.

2.3.3 Application Architecture

The DOI Application Architecture and associated technology-specific Application Reference

Architectures are described in Chapter 5. Application Architecture is not explicitly referenced in

the IEA except to the extent to which it is dealt with in the DOI Technology Reference Model

(TRM). Most application architecture depends on specific technology solutions. The Software

Development Life Cycle (SDLC) documentation will provide the right best-practice artifacts to

build DOI solutions.

2.3.4 Technology Architecture

Solution Architecture uses Technology Architecture for guidance in identifying the best platform

and infrastructure for each application. Technology Architecture describes the infrastructure on

which application components depend for execution, best practices for organizing the

infrastructure components, and recommended technologies to be used. As such, it uses the IEA

Technology Reference Model (TRM). The TRM contains recommended Technology

Specification as well as lists of preferred COTS products for particular types of solutions. For

more information about the DOI TRM, see http://www.doi.gov/ocio/architecture/fea.htm#trm.

2.3.5 Security Architecture

http://www.doi.gov/ocio/architecture/fea.htm#brm
http://www.doi.gov/ocio/architecture/fea.htm#drm
http://www.doi.gov/ocio/architecture/fea.htm#trm

 DOI Target Solution Reference Architecture

Chapter 2 – Architecture Overview 23 11/24/2010

2.4 Architectural Styles and Patterns

DOI has a unique mission, different from other agencies and businesses, but common business

patterns and solution architecture (SA) based on industry best practices apply to the underlying

DOI IT solutions. For example, the architecture for an e-commerce application at DOI will

probably resemble an e-commerce application at another agency of like size. This implies that

there is a difference between a specific architecture, and the type of application it defines. The

common industry term for the latter is architectural style.

We define architectural style as ―A set of principles, elements, patterns, and constraints designed

to meet a specific set of requirements within a specific scope‖ In other words, an architectural

style contains a well-defined set of patterns that constitute a common way for computer system

components to interact with one another. For example client/server, standalone, n-tier, and

enterprise application integration (EAI) are all examples of architectural styles.

Many metaphors used to explain software architecture are based on construction or building

architecture. We use a cathedral as a metaphor to illustrate architectural styles. All cathedrals

have certain underlying construction principles; for example the basic floor plan is that of a

cross. And while there is also wide variation among cathedrals, a few common characteristics

emerge such as Romanesque and Gothic. These two architectural styles define a specific set of

patterns that transform the basic cathedral into an easily identifiable style. The choice of an

architectural style for enterprise applications is typically made as a result of engineering

tradeoffs in response to a specific set of requirements, rather than esthetics. For example, if your

application must support geographically remote users, then the standalone architectural style is

clearly unsuitable.

At the DOI, the target Solution and Application Architectures use a combination of n-tier and

enterprise application integration (EAI) architectural styles. In addition to these broad

architectural styles, we use specific business, integration, application, run-time, and design

patterns to describe common problems solved by DOI applications. Many applications have the

same basic building blocks, such as scanning, printing, and metadata management. It is

incumbent on the application architecture to provide standard or common solutions to these

common problems that can be shared across applications. This will both maximize the

opportunities for reuse and minimize overall maintenance.

The most common use of patterns has been to use ‗design patterns‘ to describe a particular

implementation solution. This use is based on the groundbreaking work of Gamma, et. al. in the

book Design Patterns. In the TSRA, we are using patterns at an architectural level, rather than an

implementation level. In his article ―Inside Patterns‖, Douglas Schmidt describes architectural

patterns as follows:

A pattern for software architecture describes a particular recurring design problem that arises

in specific design contexts, and presents a well-proven generic scheme for its solution. The

solution scheme is specified by describing its constituent components, their responsibilities

and relationships, and the ways in which they collaborate. [1]

 DOI Target Solution Reference Architecture

Chapter 2 – Architecture Overview 24 11/24/2010

He goes on to say that every pattern:

 documents existing, well-proven design experience,

 identifies and specifies abstractions that are above the level of single classes and

instances, or of components,

 provides a common vocabulary and understanding for design principles,

 is a means of documenting software architectures,

 supports the construction of software with defined properties,

 helps with building complex and heterogeneous software architectures, and

 helps to manage software complexity

The SA builds on business patterns to provide the framework of the foundation infrastructure, to

build its application architecture, and to integrate with the architectural styles in use. The TSRA

uses four kinds of patterns, based on ―Patterns for e-business: A Strategy for Reuse‖ [1]:

 Business Patterns

 Integration Patterns

 Application Patterns

 Run-time Patterns

Business and integration patterns reflect the requirements, and are independent of application

and infrastructure topologies. Business and integration patterns are sufficiently general that they

can be used for both the current and planned architectures. On the other hand, the application

and runtime patterns put a stake in the ground that affects application and infrastructure design.

Applying patterns for e-business (selecting which patterns fit best) occurs in steps that parallel

the layered asset model shown in Exhibit 2-7:

Exhibit 2-7: Layered Asset Model

Best-Practice Guidelines

Application Design

Systems Management

Performance

Application Development

Technology Choices

Integration

patterns

Composite

patterns

Customer
requirements

Business

patterns

Application

patterns

Runtime

patterns

Product

mappings

A
ny m

ethodology

 DOI Target Solution Reference Architecture

Chapter 2 – Architecture Overview 25 11/24/2010

Pattern selection begins with identifying the business patterns that apply to the business

processes being considered. Simple implementations may involve only one business pattern, but

it is more common to find that several business patterns apply. Depending on the nature of the

business requirements, integration patterns may also be needed to extend and support the

business patterns.

Composite patterns represent frequently occurring combinations of business and integration

patterns. A less frequently occurring combination of business and integration patterns

constitutes a custom design.

Business and integration patterns correspond to sets of application patterns that provide

application topology choices, each optimized for a specific set of business and IT drivers. They

are described in Chapter 3, Business Architecture. Application patterns support runtime patterns

that provide infrastructure topology alternatives. Finally, products can be mapped to each node

of the runtime pattern, using the tested product mappings from DOI‘s preferred products list.

2.5 Service-Oriented Architecture Overview

Within the TSRA, Service-Oriented Architecture (SOA) is the preferred method for providing

business and infrastructure logic. The FEA reference models directly support the development

of an SOA and the FEA Assessment Framework category ―IT Implementation Improvement‖

looks for agency plans to evolve to an SOA.

SOA is a composite concept that describes a mode of business process implementation (as an

orchestrated collection of services) and prescribes a new way of delivering those services though

information technology. Thus it is a process organization concept and a system development

paradigm. SOA helps create the IT infrastructure with supporting services, tools and processes

intended for the construction and combination of services within a scope that extends beyond a

single application. This document discusses SOA in Chapter 5, Application Architecture.

2.6 Solution Objectives and Scope

Solution Architecture will give DOI an enhanced ability to:

 Capture, integrate and share information from other sources

 Identify needs (training, resources, etc.)

 Drive Modernization Blueprints from the conceptual to the physical

 Measure performance of programs and their management

 Meet reporting requirements

 Analyze and prioritize LOB-mandated efforts

 Justify requests and expenditures

 Manage citizen-oriented service programs

 Protect natural and cultural resources

 DOI Target Solution Reference Architecture

Chapter 2 – Architecture Overview 26 11/24/2010

Business Drivers:

IT Drivers:

 Improve Organizational Efficiency

 Reduce the latency of Business

Events

 Easy to adapt during organization

changes

 Integration across multiple delivery

channels

 Unified customer view across Lines

of Businesses (LOB)

 Leverage current assets and

infrastructure

 Minimize total cost of ownership

(TCO)

 Simplify skills base

 Simplify Back end application

integration

 Minimize enterprise complexity

 Maintainability

 Availability

 Performance

 Scalability

 DOI Target Solution Reference Architecture

Chapter 3 – Business Architecture 27 11/24/2010

3 Business Architecture

Business Architecture is applied to a solution by the following steps:

 Write a Business Description of the solution

 Draw the Solution Overview Diagram (SOD)

 Create the Use Case Model(s)

 Define the functional requirements

 Map business, integration and composite patterns to the solution overview

The Business Description must be the first step because the SOD and functional requirements are

derived from it.

3.1 Business Description

The business description defines at a very high-level for a solution the DOI lines of business,

business functions, the users, and the interactions between users and functions. It can be as

simple as a couple of paragraphs. It should define the business functions that the solution will

perform along with the DOI lines of business (LOBs) and external users for which the solution

will provide services.

3.2 Solution Overview Diagram

The Solution Overview Diagram represents the business description pictorially, showing the

users, business functions, and their connections.

 DOI Target Solution Reference Architecture

Chapter 3 – Business Architecture 28 11/24/2010

O
U

3.3 Use Case Models

The high level Use Case Model describes how the proposed solution components satisfy the DOI

functional requirements. The model uses graphical symbols using UML notation and text to

specify how users in specific roles will use the system (i.e., use cases). The textual descriptions

describing the use cases are from a user‘s point of view; they do not describe how the system

works internally or its internal structure or mechanisms. The Use Case document is necessary

for the DOI solution to be customized to meet the business‘s need. Much of the basis for the Use

Case Model may be created during the authoring of the Modernization Blueprint. Use Case

Model constructs such as Actors, Inputs, Outputs, and Relationships will have been collected

during execution of MBT steps 1 - 5 for a given functional area or line of business (LOB)

The Use Case Model is described by the following constructs:

 Actors (name, description, status, subclass, superclass, and associations)

 Use cases (number, subject area, business event, name, overview, preconditions,

description, associations, inputs, outputs, traceable to, usability index, and notes)

 Communication-associations between actors and use cases

 Relationships between use cases (same as use case associations)

 Termination outcomes

 Conditions affecting termination outcomes

 DOI Target Solution Reference Architecture

Chapter 3 – Business Architecture 29 11/24/2010

 Termination outcome decision table

 Use case scenarios (number, termination outcome, description, and notes)

 Problem domain concept definitions

 System steps decision table

 Flow of events table

 System sequence diagram

Actor names, actor descriptions, use case numbers, use case names, and use case business events,

and use case overviews as well as communication-associations between the actors and the use

cases provides an overview of the functional requirements. The other constructs of the model

document the expected usage, user interactions, and behaviors of the system in different styles

and depth.

The Actors that participate in the Use Case Model can be graphically depicted to show the

relationships among the Actors, and textually defined to describe important properties of the

Actors. The following diagram is an example of a high-level Use Case Model.

Exhibit 3-2: Use Case Model Example

Actor1

UseCase1

UseCase2

UseCase3

-End1

*

-End2

*
-End3

*

-End4

*
Actor2

UseCase4 -End5

*

-End6

*

«uses»

UseCase5

«uses»

Each component in a Use Case Model is defined separately in text documents to describe

important properties. The following table is an example defining an actor.

Exhibit 3-3: Example Actor Definition Table

Actor Name Actor name

Brief
Description

Actor description

Status Primary

Relationships

Inheritance Subclass List of actors that are subclasses of this actor

Superclass If this actor is a subclass of another actor, name that parent actor

Associations To Use Cases Use cases this actor is associated with

Use cases are also defined by text that describes details about the Use Case, including the

sequence of actions that take place when an Actor carries out a use case.

 DOI Target Solution Reference Architecture

Chapter 3 – Business Architecture 30 11/24/2010

Exhibit 3-4: Example Use Case Description Template

Use Case Name

Subject Area

Business Event

Actor(s)

Overview

Preconditions

Termination
Outcome(s)

Conditions Affecting
Termination Outcome

Post Conditions

Basic Flow Actor Action System Response

Alternative Flow 1 Actor Action System Response

Alternative Flow 2 Actor Action System Response

Alternative Flow 3 Actor Action System Response

Input Summary

Output Summary

Business Rules

UC Associations

Traceability

Use Case Notes

System/Database

Business Volume

Availability/SLA

Special
Requirements

Use Case models are applicable to an off-the-shelf system. They are a powerful training tool and

an excellent foundation from which to begin customizing an off-the-shelf application. This is

 DOI Target Solution Reference Architecture

Chapter 3 – Business Architecture 31 11/24/2010

their intended role in the DOI project; therefore, high level Use Cases are sufficient and

necessary only for the primary functions delivered by off-the-shelf applications.

3.4 Functional Requirements Document

A functional requirements document can be useful at a number of points within a system

development lifecycle (SDLC), such as the design, testing, and acceptance phases. The

functional requirements are captured, primarily from the use case model, normally in a grid

presentation, such as a spreadsheet, a table, or a requirement modeling tool. The functional

requirements should contain, at a minimum, a statement of the requirement, the date the

requirement was captured, its context, source and priority, and the type of requirement (such as

business, user, accessibility, etc.). The Functional Requirements Document should tie back to

the recommendations in the Modernization Blueprint, if applicable, as well as the solutions

overview diagram and the use cases.

3.5 Business, Integration and Composite Patterns

Business patterns are high-level concepts that establish the business purpose of any solution.

They define major objectives of the solution, identify participants, and help describe the

interactions between participants. Four basic business patterns are at the core of most (if not all)

composite business patterns: Self-Service, Collaboration, Information Aggregation, and

Extended Enterprise. There are also two integration patterns used to integrate two or more basic

business patterns: Access Integration and Application Integration.

Exhibit 3-5: Business and Integration Patterns

Self-Service

A
c
c
e

s
s
 I
n

te
g
ra

ti
o

n

Collaboration

Information Aggregation

Extended Enterprise

A
p
p
lic

a
ti
o
n
 I
n

te
g
ra

ti
o
n

These business and integration patterns can be combined as composite patterns to implement

DOI-specific business solutions, making up composite patterns, discussed in Section 3.5.3,

 DOI Target Solution Reference Architecture

Chapter 3 – Business Architecture 32 11/24/2010

Composite Patterns. For more information on patterns, see Patterns for e-business: A Strategy

for Reuse [1] and ―Inside Patterns‖ [10].

3.5.1 Business Patterns

There are four business patterns:

 Self-Service

 Collaboration

 Information Aggregation

 Extended Enterprise

Nearly all DOI business processes involve user interaction with business services, indicating that

the self-service pattern applies. For example, the collaboration pattern appears through out the

lifecycle of a system development effort where managers, business domain experts and

developers work together to define requirements, formulate designs and iterate through the

cycles of builds/tests. The information aggregation pattern provides the means to populate the

underlying data stores. The need to integrate within DOI and various bureaus and to integrate

with business partners represents an example of the extended enterprise pattern.

Exhibit 3-6: Business Pattern Selection Summary

Business Pattern Description Applicability to DOI

Self-Service
(User-to-Business)

Applications where users interact with a
business via the internet or intranet

Good fit for a majority of
business sub-processes.

Collaboration

(User-to-User)

Applications where technologies support

collaborative work between users.

Good fit for a subset of

business sub-processes.

Information
Aggregation
(User-to-Data)

Applications where users can extract
useful information from large volumes of
data, text, images, etc.

Good fit for a small subset of
business sub-processes.

Extended Enterprise
(Bus-to-Bus)

Applications linking two or more business
processes across separate enterprises

Good fit for the integration
with other government
agencies.

3.5.1.1 Applying Business Patterns to the SOD

 DOI Target Solution Reference Architecture

Chapter 3 – Business Architecture 33 11/24/2010

Exhibit 3-7: Solution Overview Diagram with Business Patterns

This step requires an understanding of the business and system context, which should already be

documented as described in the repositories mentioned earlier or the Functional Requirement

Document (FRD).

3.5.2 Integration Patterns

Integration patterns are the glue that ties business patterns together. There are two integration

patterns:

 Access Integration

 Application Integration

Access integration describes recurring designs that enable to access to one or more business

patterns. For example, this pattern can be used to create a consistent user interface to common

services when accessed from different devices. Application integration allows seamless

execution of multiple applications and access to their data to create complex business functions.

Exhibit 3-8: Integration Pattern Selection Summary

Integration Pattern Description Applicability to DOI

Access Integration Integration of a number of
services through a common
entry point

Good fit in the area of
consistent user interface,
single interface to multiple
applications in the enterprise

 DOI Target Solution Reference Architecture

Chapter 3 – Business Architecture 34 11/24/2010

Application Integration Integration of multiple

applications and data sources

without the user directly
invoking them

Good fit due to the need that

there are multiple

applications and data stores
that a user such as an
inspector/ranger needs to
interact with for common
business processes

3.5.2.1 Applying Integration Patterns to the SOD

Ellipses are added to indicate where Integration patterns apply. Notice in Exhibit 3-9 that two

integration patterns have been identified: Application Integration (4 instances) and Access

Integration (1 instance).

3.5.3 Composite Patterns

Composite patterns combine business and integration patterns to create complex e-business

applications. For example, an enterprise intranet portal aggregates multiple information sources

and applications to provide a single, seamless and personalized access to users. For example, the

portal composite pattern can potentially use all of the business and integration patterns. Some

potentially useful composite patterns for DOI are listed in the following table.

Exhibit 3-10: Table of Composite Patterns

Name Description

 DOI Target Solution Reference Architecture

Chapter 3 – Business Architecture 35 11/24/2010

Citizen to Government This pattern is a composite of the self-service, information aggregation, and

extended enterprise (for more complicated systems) business patterns with
the access integration pattern and possibly the application integration

pattern. An application based on this pattern might allow a citizen (the
government’s “client”) to establish and maintain an account with the
government site (for example, providing contact information), to view
information on the site, and possibly to transact business (for example,
applying for a permit).

Government to
Government/Business

This pattern (commonly called Business-to-Business or “B2B”) might be used
for a government “buy-side hub”, a site used to facilitate procurement.

Portal A portal is a secure, personalized point of access to key business information.
It typically aggregates information from multiple sources, such as documents,
databases, ERP systems, and other line of business applications. Portals
present the information through a single integrated, consistent interface that

is appropriate for the user’s role in the organization.

Enterprise Application
Integration

Enterprise Application Integration applies the Access and Application
Integration patterns to any number of the four standard business patterns, as

implemented in existing applications.

Enterprise Reporting An enterprise reporting pattern would be used for an application that allows
the distribution of reports from diverse applications to anywhere in the
enterprise.

Business Intelligence Business Intelligence is the current buzzword for data warehousing, data
mining, knowledge management, and other data analysis applications. It
uses a combination of the Information Aggregation business pattern and

possibly the Extended Enterprise business pattern with the Application
Integration pattern. The general approach is to use “Evaluate, Transform,
and Load” (ETL) tools to create data warehouses or data marts, and then use
data mining and/or reporting tools to derive valuable information from the
aggregated data.

Office Productivity
Tools

This pattern encompasses the tools used by information workers, such as
email, word processing, spreadsheet, etc.

Knowledge Worker Knowledge workers are employees who spend a majority of their time

analyzing and reporting on information about their business and making
decisions based on these analyses. The success of a modern organization
depends largely on the ability of its information workers to discover, analyze,

and act on line-of-business data and operational information. Knowledge
workers most often process information by means of portals and office
productivity tools.

Mobile Worker –
Mobile

Mobile users rely on notebook computers for their daily work. They are
frequently (perhaps generally) disconnected from the internal network and
often connect by means of public networks or extranets. To best serve

mobile users, applications should leverage Smart Client technology to provide
for productive disconnected operation. Connection to back-end systems
occurs by means of web services. Smart clients should be capable of
connecting over the internet using
certificate authentication, encryption, and digital signatures. Applications
that include free-form text input can also benefit from the inking capabilities

of Tablet PCs; this allows data to be entered in handwritten form.

Mobile Worker –
Highly Mobile

Highly mobile users require access to business information at all times. They
are best served by mobile devices and laptops with wireless connectivity.
Extranet web sites can be developed to support mobile devices by optionally
producing small-format web pages.

Mobile Worker –
Roaming

Roaming users make use of different computers depending on their work
location. This is often the case with offices that use a “hoteling” approach for
workers who are infrequently on site. Applications written for roaming
Windows users can leverage the roaming profile feature of the Windows
operating system, and store user data and settings in the user’s profile rather
than in local computer’s file system or registry. The roaming profile feature

 DOI Target Solution Reference Architecture

Chapter 3 – Business Architecture 36 11/24/2010

maintains the user’s profile on a server and makes it available to the user

regardless of which computer is used.

Line of Business
Application

Custom-developed line-of-business applications are best suited to specific
DOI business activities or the automation of business processes that are
specific to DOI. These applications go beyond typical knowledge worker
activities and benefit from a more sophisticated user interface that is tailored
to the application domain. User interfaces to line-of-business applications
use one of two architectures: web applications or rich/smart clients.

 DOI Target Solution Reference Architecture

Chapter 4 – Data Architecture 37 11/24/2010

4 Data Architecture

The initial steps for a solution relating to Data Architecture are to define the subject areas and

information classes used by the solution, to map solution data in the to DOI Conceptual and

Logical Entities, and to create a solution Entity Relationship Diagram (ERD) and/or an Object

Role Model (ORM) diagram. Data patterns can also be useful when a new system must be

developed. Much of the data work is started during the creation of the Modernization Blueprint.

The data architecture for a business area is started during Steps 2-4 in the MBT. By the end of

the Modernization Blueprint study, the data architecture has been developed to include a target

logical data model, an information exchange matrix, a CRUD matrix, and recommendations for

authoritative data sources.

At some point in the solution lifecycle, the architects and designers may determine that it makes

sense to use an existing database, a COTS database, or a COTS application with its own database

structure. If this is the case, then not all data-related steps documented here may be applicable to

the solution. For example, it may not be particularly useful to map a COTS database to

conceptual and logical entities within the DOI DRM, but it should be rather simple to define the

subject areas and information classes within the COTS database.

4.1 Subject Areas and Information Classes

Subject Areas and Information Classes are part of the DOI Data Reference Model (DRM).

Subject Areas are collections of data classifications representing broad categories of information

that support a line of business. An Information Class is a logical grouping of entities within a

Subject Area. The DOI DRM contains 21 subject areas, each having one or more information

classes.

4.2 Conceptual and Logical Entities

The conceptual and logical entities take the data classifications down another level to identify

―objects‖ that could map to a (logical or physical) database table. For example,

The solution architects and designers should expand the list of subject areas and information

classes (as discussed in section 4.1, above) by mapping solution data to the DOI Conceptual and

 DOI Target Solution Reference Architecture

Chapter 4 – Data Architecture 38 11/24/2010

Logical Entity Relationship Model Diagrams, identifying common entities in the solution data.

Solution data entities that do not map to any of the entities in the DRM should be noted.

4.3 Entity Relationship Diagrams

If it has been decided that the solution (or parts of it) must be one or more custom-built

applications, the types of data that will be required by each application should be organized into

logical and physical Entity Relationship Diagrams (ERDs). The logical ERD represents entities

and their attributes (and, optionally, categories) as well as the relationships between them. The

physical ERD differs from the logical one in that it represents the tables and columns that will

actually be implemented in a database.

The basic ERD diagram is made up of rectangles that represent entities (i.e., tables in the

physical ERD) or views and lines that represent the relationships between the entities. A logical

ERD may also contain a circle sitting on a horizontal line that represents a category. Attributes

(columns in the physical ERD) are listed within the entity and view boxes, with primary and

foreign keys noted if known. A physical ERD may differ in several ways from its associated

logical ERD. Multiple logical entities may be collapsed into one or more tables. For example, it

is standard practice to represent every look-up entity (such as state codes, zip codes, etc.) as

separate logical entities, but they may be implemented as a single, generic reference table or as a

standard pattern of reference tables that includes a values, grouping, and sub-grouping tables.

4.4 Object Role Model Diagrams

For many newer applications, when custom-built applications are required, an Object Role

Model (ORM) diagram may be more useful than an ERD. The ORM starts at a much more

conceptual level than an ERD, with no attributes and all ―facts‖ stated as relationships between

objects. ORM tools allow ORM models to be mapped to relational database schemas. For more

information about ORM diagrams, see Information Modeling and Relational Databases [9].

There is also a good overview by the same author on the Microsoft Developers Network

(MSDN) site.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstechart/html/vstchvsea_ormoverview.asp

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 39 11/24/2010

5 Application Architecture

This chapter describes the DOI Application Architecture. The concept of an application

architecture may first be developed by the EA and SA analysts as part of Step 4 in the MBT. If

so, the intent is to have a high level applications architecture as part of the recommendations in

the Modernization Blueprint.

First, application patterns are described within the context of particular business and integration

patterns. The application patterns are used to determine the appropriate application tiers. The 5-

layer architecture is mapped to the model as a point of reference. The application architecture is

then expanded to cover a multi-channel, technology independent approach. Next, reference

models are introduced to provide a foundation for describing the application architecture and the

application‘s integration with technology-specific infrastructure services. (Example mappings to

J2EE and .NET are provided.) Patterns for channel styles and server functionality are presented.

This chapter also discusses mapping the Service Component Reference Model (SRM) to a

solution‘s business functionality.

5.1 Application Patterns

Application patterns represent the partitioning of the application logic and data together with the

styles of interaction between the logic tiers. They describe the shape of applications in terms of

the application boundaries, where data resides and how it is accessed, and how users and

processes interact. Each of the business and integration patterns described in sections 3.1 and

3.2, above, has associated application patterns. An application pattern needs to be identified for

each of the Business and Integration patterns selected. After the application patterns have been

selected, the Business and Integration pattern names can be updated to show which application

pattern(s) apply to each Business and Integration pattern. This should not require a change to the

box or ellipse layout. Only the pattern names are revised, using the ―::‖ notation mentioned

earlier. The results of this step for the two Business Patterns (Self Services & Information

Aggregation) on the right side of Exhibit 3-9 are shown in Exhibit 5-1 and Exhibit 5-2.

Exhibit 5-1 is the Self Services run time pattern Application Decomposition Pattern. The DOI

Target Solution Reference Architecture (TSRA) must also comply with the DOI Enterprise

Service Network Topology (ESN initiative) .

Exhibit 5-2 is the Information Aggregation Multi-Step Application Run Time Pattern for

Business Intelligence. There are some variations to the Multi-Step Application Run Time

Pattern. DOI may need to adopt additional variations to support Business Requirements in the

future. During proposal and procurement, vendors may propose any new technologies to support

Business Intelligence Solutions such as Virtual Operational Data Store, Dynamic Query Routing,

etc.

Exhibit 5-3 is the Extended Enterprise Managed Public and Private Processes application pattern

structures, a system design that handles different business protocols with different business

partners and maps long running external transactions to internal business processes and

workflow.

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 40 11/24/2010

The detailed Solution Architecture (SA) for Exhibit 5-2 and Exhibit 5-3 will not be derived until

the vendors have been chosen and the detailed business requirements are finalized for the

appropriate deployment.

Exhibit 5-1: DOI Business Self-Service Runtime Pattern Application Decomposition Tier

Internal networkDemilitarized zone Outside world

Integration

Server

P
ro

to
c

o
l

 Fire
w

a
ll

Existing
Applications

and Data

D
o

m
a

in
 Fire

w
a
ll

I

N

T

E

R

N

E

T

Public Key
Infrastructure

User
Node

Web Server

Redirector

 Application

 Server

Pres2

Pres1 synch synch

asynch

App 2

App1

Domain Name
Server

Decomposition

Exhibit 5-2: DOI Information Aggregation Multi-Step Application Runtime Pattern

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 41 11/24/2010

Exhibit 5-3: DOI Extended Enterprise: Manage Public & Private Processes

So far, we have described a generic architecture for constructing distributed applications that

meet the DOI requirements. This architecture lays the foundation for all of the DOI Solutions.

The next step is to identify the application level functionality that is common across several

Solutions. For example several different systems deal with scanning, others deal with

application metadata. At a minimum, we want to solve the common problems in the same way

in all applications. Even better, would be to create services to perform the common functions

and have those services used by the different Solutions.

In addition to representing the partitioning of the application logic and data with interaction

styles between tiers, the application patterns are intended to identify the common application

functionality across DOI, identify services to provide that functionality, and then provide

patterns for how those services are used within applications. DOI has identified eight major

application patterns by type of service:

 Document Management and Scanning – Covers the full lifecycle of document

management from the acquisition of those documents (softcopy text, image, and other

formats), to storage, retrieval, and management of the documents. Acquisition of

documents includes scanning paper applications, as well as receiving electronic-only

applications.

 Text Search and OCR - Provides enterprise text search capabilities, text search

databases, and creation of text from images.

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 42 11/24/2010

 Workflow – Provides for the definition and management of business processes as

workflows. Workflows include both human and AIS performed activities. Workflow

includes the scheduling of automated activities, and the tasking and management of

human activities using inboxes, outboxes, routing, messaging, etc.

 Metadata Access and Reporting - Storing, and retrieving metadata associated with DOI

entities, inclusion of the metadata in reports, and the creation of reports about the

metadata.

 Correspondence Generation - Creation, storage and tracking of outgoing

correspondence.

 Customer Information Management - Services related to managing metadata relating

to external and internal customers.

 Application Integration – Exposing existing applications and/or data as services to the

enterprise.

5.2 Non-Functional Requirements

We have already discussed functional requirements. Other requirements, such as availability,

capacity, and performance fall into the category of non-functional requirements (NFRs). The

Modernization Blueprint and subsequent records of decisions may form the basis for many of the

systems functional and non-functional requirements. The blueprint should identify critical

performance indicators for a given business area that may be tied to actual performance metrics

in Bureau and Departmental strategic plans. NFRs specify the qualitative and other non-

functional requirements that an IT system must satisfy. These requirements can pertain to an

individual system or a set of systems, to provide a related hierarchy of department- and

enterprise-level requirements. NFRs consist of:

 Service level requirements (SLRs), which are run-time properties the system as a whole,

or parts of the system, must satisfy. SLRs include:

 Capacity and performance (volumetrics)

 Availability

 System management

 SLRs sometimes relate to particular parts of the system, e.g., to particular use cases.

 Other required (non-runtime) properties of the system, such as:

 portability

 maintainability.

For convenience, NFRs can also include constraints the system must conform to or satisfy.

System Constraints include:

 The business constraints which the system must satisfy (e.g., geographical location)

 The technical standards the system must satisfy

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 43 11/24/2010

 The technical ‗givens‘ which constrain the system (e.g., which existing hardware or

DBMS must be used).

These requirements facilitate the design and development of the operational model (i.e. the

computers, networks, and other platforms on which the application will execute and by which it

is managed). They also feed into the design of technical and application components. For

example, service level requirements may imply component performance requirements. For the

implementation of a system using off-the-shelf applications, SLRs define elimination criteria for

products that do not conform to the current and target architecture environment in which the

system must operate.

It is more convenient to specify the details of certain NFRs in other work products and just refer

to them in this work product. For example, use case frequencies could be detailed in the use case

model. However, most NFRs should be documented in this section of the SA Document. A

subsection is created for each NFR category. The following list can be used as a guideline for

the NFR categories that need to be captured:

 Availability

 Backup & Recovery

 Capacity Estimates and Planning

 Configuration Management

 DTSRAster Recovery

 Extendibility/Flexibility

 Failure Management

 Performance

 Reliability

 Scalability

 y

 Service Level Agreements

 Standards

 System Management

Some NFRs are expected to change over time. For example, capacity requirements very often

increase as more workload is added to the system, or as the volume of stored data increases.

Exhibit 5-4 provides a convenient way to capture this information.

Exhibit 5-4: DOI Non-functional Requirement

Capacity Characteristic Bureau Level Volume DOI Level Volume

Current In 2- 4 yrs Current In 2- 4 yrs

Average number of concurrent users
(including support representatives)

50 500 0 2000

Maximum number of concurrent users
(including support reps)

100 1500 0 5000

Total number of users in the system 200 3000 0 10000

Maximum number of unique customer
sessions per day. (How many unique

250 2500 0 5000

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 44 11/24/2010

customers will use system in a day)

Total number of inquiry transactions

processed in a day

50 500 0 1000

Total number of update transactions
processed in a day

200 2000 0 4000

Number of transactions that are submitted

to external entity in a day

1 250 0 10

Minimum number of inquiry transactions per
user session

4 3 4 3

Maximum number of inquiry transactions per
user session

8 25 8 25

Minimum number of update transactions per
user session

1 1 1 1

Maximum number of update transactions per
user session

4 7 4 7

5.3 Architectural Reference Models

The architectural reference model defines the fundamental concepts of the application

architecture. The logical reference model is built on two main concepts: layers and tiers. Both

architectural layers and architectural tiers describe a logical separation of functions, where each

layer or tier has assigned to it a specific set of roles and responsibilities in response to a specific

set of requirements.

The logical separation for architectural layers is chosen based on the need to separate

infrastructure capabilities (for example, communications) from technical services (for example,

logging or error handling)—and especially from business logic.

The logical separation for architectural tiers—that is, the boundaries between tiers—are chosen

or designed to support distribution, scalability, and reuse. Logical tiers can be mapped to

different physical computer network topologies. For example, it is entirely possible for all tiers

to reside on the same machine. In complex distributed environments, a single logical tier might

run on a farm of servers.

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 45 11/24/2010

Exhibit 5-5: Architectural Reference Model

user enterpriseworkspace resource

services

infrastructure

application

Underlying technical and

communication capabilities

Common utility functions applied across tiers

Application level business logic

Tiers

Layers

Presentation

and device

independence

User session

and data

manipulation

Business

processes

and entities

Shared

enterprise

resources

A
p
p
lic

a
tio

n
A

rc
h
ite

c
tu

re
T

e
c
h
n
ic

a
l

A
rc

h
ite

c
tu

re

5.3.1 Reference Model Concepts

The relationship between architectural tiers and layers in the reference model is shown in Exhibit

5-5, which portrays three architectural layers (at left) and four architectural tiers (at the top).

In terms of Solution Architecture, the application architecture is primarily concerned with the

tiers of the application layer. This is where the logical structure of the application is described

and the roles and responsibilities are defined. The technical architecture is primarily concerned

with the infrastructure layer. This is where the physical realization of the application is defined

in terms of software and hardware.

The services layer is addressed by both the application and the technical architectures. For

example, the application architecture defines common application level services, such as

document management. The technical architecture defines infrastructure level services such as

naming/location, For each service, there are both application level concerns (how

to use the service in an application) and technology level concerns (how the service is

implemented). The main distinguishing characteristic of the service layer is that it provides

‗common utility functionality‘ (rather than business functionality) that typically spans the tiers.

5.3.1.1 Layers

Infrastructure is the lowest layer and provides the communications capabilities, among other

things. Typically, some or all of the functions in this layer are obtained as part of an off-the-

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 46 11/24/2010

shelf middleware or application server package. The separation of infrastructure into a separate

layer protects the application logic from changes in the underlying platform and products.

The Services layer provides utility functions that are useful in more than one tier and by more

than one family of applications. Services include capabilities such as logging, configuration, and

XML parsing and persistence. Services are independent, callable (frequently remote) functions

that provide shared access to resources and capabilities. Some of the services at this layer may

be provided directly by the infrastructure, but experience has shown that these out-of-the-box

services frequently need to be customized to meet the specific requirements of the enterprise.

Independent of any functional customization, the service layer typically provides a higher-level

interface that simplifies use of the infrastructure and insulates the application from technology

specifics.

Application and business functions are implemented in the Application layer using the

capabilities of both the infrastructure and services layers. The application layer is where the

roles and responsibilities of the four architectural tiers are exploited.

5.3.1.2 Distribution Tiers

The dotted vertical lines in Exhibit 5-5 represent logical distribution tiers in the model. There

are four tiers: user, workspace, enterprise and resource. The distribution tiers are designed to

support scalable distribution and deployment flexibility. At deployment time, the distribution

tiers are mapped to a specific physical node (for example, the User tier could be mapped to a thin

client, the Workspace tier to a web server and the Enterprise and Resource tiers being mapped to

an application server, or all tiers could be mapped to the same Unix Workstation system).

Tiers have the responsibility of mediating the flow of data into and out of the system itself.

However, each tier has a specific set of roles and responsibilities and the boundaries between the

tiers are carefully constructed to achieve the architectural goals. The four-tier model evolved

from the classic three-tier architectural model in response to the demands of modern enterprise

system. The responsibilities of these tiers are:

 The User Tier is where the system experiences a single use of the system through a

specific presentation. The user tier is responsible for device-specific presentation such as

that needed for a web browser. The boundary between the user and workspace tier

provides for device independence, allowing the application to support multiple devices

such as a Web browser and mobile devices, each of which would have its own user tier.

The user tier manages user interface details for a single presentation

 The Workspace Tier is where the system supports multiple interactions with a single user.

It is responsible for coordinating and maintaining a user session, for manipulating the

user data associated with that session, and for interactions with the enterprise tier. The

workspace tier:

 Coordinates and maintains integrity of multiple, concurrent activities for the same

user

 Maintains the user session

 Provides user preference customization

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 47 11/24/2010

 Executes processes that do not require access to enterprise resources

 Puts and gets data to and from the enterprise

The boundary between the user tier and the workspace tier provides another advantage. It allows

the same processing to be used with multiple different devices. In other words, by moving

device specifics into a separate tier, we can achieve both reuse of processes, and just as

important, consistency of operation across multiple devices. The workspace tier is most

commonly implemented with technologies such as ASP .NET or JSP and servlets.

Together, the User and Workspace Tiers support all of the interaction between the system and a

single user (or other external partner). There will be an instance of the combined User tier and

Workspace tier for each user of the system.

In contrast, the Enterprise and Resource Tiers together provide resources and services to all users

of the system. There is only one instance of the enterprise and resource tiers, which are shared

by all users:

 The Enterprise Tier is responsible for implementing business processes and entities, and

for making their functions available via service-oriented interfaces. The enterprise tier:

 Maintains the integrity of enterprise resources

 Enforces system level business rules

 Provides the scope and control for two-phase commit transactions

 Provides enterprise services to requestors

The boundary between the workspace and enterprise tiers provides a clear separation

between the resources of the enterprise and the resources required to support a single user.

This break allows enterprise resources to be better managed and protected. It also provides a

clear access point for all enterprise services, so that they can be shared and reused by

multiple applications and users. The enterprise tier is typically implemented with

technologies such as .NET business components, or J2EE EJB‘s.

 The Resource Tier is responsible for the management and access of shared enterprise

resources. The resource tier:

 Provides access to shared resources of the enterprise

 Provides access to enterprise data and databases

 Provides access to applications such as COTS or legacy systems

The boundary between the resource tier and the enterprise tier provides a separation between the

technology specifics of the resources and the enterprise‘s use (as well as the service‘s

representation) of them. This allows changes in the resource or enterprise tiers to occur

independently, without disruption of the other.

Tier partitioning makes it possible to define specific roles and responsibilities within the system,

and to draw clear boundaries among them. Tiers cooperate (that is, invoke each others‘ services)

much the way layers do. However, every tier also invokes the underlying layers to fulfill its

responsibilities.

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 48 11/24/2010

Experience has shown that this four-tier model is most suitable to an enterprise and Service-

Oriented Architecture. A modern enterprise must support a wide range of client applications,

devices, and access channels and must be able to support flexible, agile, configurable business

processes. Each of these requirements is supported by the distribution of responsibility between

the four tiers. In addition, this distribution maximizes consistency and reuse of processing logic

at multiple points.

In addition to the layers and tiers, the reference model relies on patterns to define the solution to

common processing scenarios at the DOI.

5.3.1.3 Patterns

While these general patterns are appropriate for use within DOI, they are not sufficient. There

are also specific application patterns that apply to DOI that are not covered in available literature.

The application architecture defines patterns specifically for how to construct common

application capabilities.

5.3.2 5-Layer Model

Let‘s start to work with the reference model by relating it to another familiar model, namely the

5-Layer model presented earlier. Exhibit 5-6 shows the 5 layers redrawn within the tiers of the

new application layer. Their position within the tiers is based on their functions in relation to the

roles and responsibilities of the tiers. (Note that we are now using the more formal definition of

layers and tiers).

Exhibit 5-6: 5-Layer Model Positioned in the Reference Model

Presentation
Controller/

Mediator

Business/

Domain
Data Mapping Data

user enterpriseworkspace resource

application

Unfortunately, the model in Exhibit 5-6 still leaves a lot of room for interpretation. What does a

controller/mediator do? What is a domain object? How does it relate to an SOA service? The

application architecture needs to be more specific if it is to achieve consistency and commonality

between applications.

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 49 11/24/2010

Exhibit 5-7 shows a more detailed version of the 5-Layer architecture that introduces a new

concept to the reference architecture. The boxes in the diagram are architectural elements, parts

of the application logic and structure defined by their roles and responsibilities. The names of

the elements suggest their role. These names have been chosen so as not to imply any specific

technology implementation. That will occur later in the technology mapping.

Exhibit 5-7: Improved 5-Layer Model

Presenta ion

user enterpriseworkspace resource

View

Controller

Session

Controller

Session

State

User

Profile

Mediator

Business

Function

Data

Mapping

Function

Mapping

Data

Existing

Systems

Business

Entity

Resource

Adapter

Application

Adapter

5.3.3 Architectural Elements

Each grey box in Exhibit 5-7 represents an Architectural Element in the construction of a

software application. These concepts allow the architecture to address specific requirements

with specific aspects. The roles, responsibilities and boundaries between elements have been

carefully identified to support the following application requirements:

 Distribution – the boundaries between tiers correspond to typical machine boundaries in

enterprise applications.

 Scalability – distribution tiers can be mapped to different physical processors, and each

tier within an application can be replicated. This possibility, along with load balancing

methods between tiers allows an application to scale up.

 Separation of application development from infrastructure development – all

software aspects which are not directly related to the business logic of an application are

handled in specific infrastructural elements (such as adapters). This separation allows for

better reuse of infrastructure, and allows for better resource and skill set utilization of

developers.

 Technology independence – the architectural concepts and design guidelines are not

constrained by a particular technology or product. Each architectural element can be

mapped to a different type of implementation (such as a Java servlet or ASP.NET Web

Forms), depending on the target technology. The Technical Architecture provides the

mapping of the application architecture to technologies and products.

 Device independence – Components use resource adapters to isolate business logic from

the specific characteristic of storage devices. Presentations are specific to a particular

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 50 11/24/2010

presentation device and supported by a view controller for that presentation device.

Session coordinators are device independent.

 Application integration – concepts and specification of components such as data adapter

and application adapter are introduced for integrating to the legacy and the packaged

application.

 Future enhancements and migrations – functional elements may be replaced or split

into more detailed elements for any enhancement of the architecture. Separation of

concerns allows a designer to replace or enhance ―parts‖ of the architecture with little

impact on the rest.

The following presents a detailed description of the different architectural elements shown in

Exhibit 5-7.

5.3.3.1 Presentation

We can think of a user interface as being made up of form and function. The presentation

element is the form or layout part of the user interface. It is responsible for formatting the input

and output of information on behalf of the user. The implementation of a presentation element is

dependent on the physical device and technology used for presentation.

For example, an HTML page (perhaps described by a JSP, XForm, or .NET Master Page) could

be the presentation for a web browser interface. A Form would be the presentation for a .NET

Smart Client interface. A different type of presentation would be used for a handheld device.

5.3.3.2 View Controller

The view controller is the functional part of the user interface. It is responsible for presentation

specific input and output, or actually sending data to and receiving data from the presentation

device. It is also responsible for trivial business logic such as filtering, drag/drop (where the

technology allows it), and cross-field validation. The type of view controller is dependent on the

physical device and technology used for the presentation, and normally matches the presentation

technology.

For example, if the presentation is HTML, the View Controller could be implemented as a Java

Servlet or a .NET class. In Visual Basic (VB), the View Controller is often implemented

automatically as part of the VB runtime. If the user interface were through a telephone, then the

View Controller could understand about the speech simulation, voice recognition and/or keypad

input technologies driven by the Presentation.

5.3.3.3 Session Controller

An application frequently requires more data to be input than can be accomplished in a single

presentation. Also, specifically what data needs to be input in subsequent presentations may

depend on specific information entered in a previous presentation. The session controller is

responsible for the collection and temporary storage of information across multiple presentations

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 51 11/24/2010

and for navigation from one view controller to the next. It handles the ―user‘s unit of work‖ (as

opposed to the system‘s unit of work).

The Session Controller is responsible for maintaining the user‘s state throughout the session and

for applying the user preferences to the user interface and session logic.

5.3.3.4 Mediator

The Mediator is responsible for making requests to the Enterprise Tier, and for receiving

responses and/or data from it. The mediator provides a user/workspace side business abstraction

that hides the implementation of the business services and reduces the coupling between the

workspace and enterprise tiers. The mediator provides client transparency to naming and lookup

services and handles the exceptions from the business services.

5.3.3.5 Business Function

The primary goal of an application is to support functions of the business. The business function

(or business application function) element is structured as a service and provides functionality

through a well-defined interface, or service contract. Services vary based on granularity, scope,

and visibility. The items below define concepts and types of services.

 Interface – An interface defines the interaction with a service. It defines the inputs and

outputs of the service and any pre-conditions, post-conditions, and constraints of the

service. The interface may be specified in terms of an ‗interface definition language‘

(such as WSDL), or as an interface class (as in Java).

 Granularity – Refers to the size or amount of functionality in a given interaction. For

example, a very fine-grained interaction would be to set or get a single attribute value of

an object. A very coarse-grained interaction would be to get all of the values of a

collection of objects in a single interaction. These are examples of interface granularity.

Granularity also refers to the process and value of a given interaction. For example,

‗register trademark‘ is a higher grained service than ‗validate address‘. The appropriate

granularity of service and interface is based on the intended usage and applies to the type

of service.

 Atomic service – the lowest level or most fine grained business functionality within the

system. Atomic services cannot be decomposed.

 Foundation Service – A foundation service is a utility that aids in the construction of

business services, such as a business rules engine, data-routing service or workflow

system. These services do not provide any specific business functionality, but rather

provide higher-level technical capabilities for the construction of services.

(Unfortunately, we have been calling these things ‗services‘ for twenty years, so even

though they are different than the business /domain services that are now the goals of

SOA, we‘re stuck with the name).

 Integration Service – A service that exposes an existing application, legacy or COTS

system as a service. It is responsible for mapping between the existing functional and

data model, and the enterprise functional and data models.

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 52 11/24/2010

 Domain Service – A domain service is a finer grained service that provides business

functionality within a specific business domain. For example, validating correctness of

payee data is a service that is shared by several different aspects of application

processing. Domain services provide common functionality that is used in the

construction of business services.

 Utility Service – A lower-level, finer-grained service that provides common, or utility

functionality across business domains, such as ‗send correspondence‘.

 Business Service – A business service is a specific kind of service that offers a higher

granularity of business value (such as ―application acquisition,‖ or ―

It is typically constructed of several lower level or finer-grained processes and services.

Business services are often constructed by composing several lower level services

together.

The different types of services are used together and support each other. Exhibit 5-8 illustrates

the hierarchy of these service types.

Exhibit 5-8: Service Type Hierarchy

Enterprise

Service

Composition

Business

Service ...
Domain

Service

Business

Service

...Domain

Service

Atomic

Component

Integration

Service...
Utility

Service

Foundation Service Layer

(May be used by all other services)

5.3.3.6 Business Entity

Business Entities represent units of information (data) that reflect the state of the business.

Together with the supporting services (i.e., business function elements) directly associated with

the maintenance, access, and provision of that data), they maintain the data and have their own

identity. Business entities are often re-used by several different Business Services.

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 53 11/24/2010

5.3.3.7 Data Mapping

The Data Mapping Entity provides the mapping between the enterprise definition of data (based

on the information model) and the physical representation of that data in one or more databases.

In many cases, data mapping has to aggregate data from multiple sources to achieve the

enterprise wide information view.

Note that we do not attempt to redefine data definitions of existing systems. Attempts at

achieving ‗enterprise data definitions‘ failed in the ‗90s because it is often impossible to change

existing systems, much less agree to a common definitions. Instead, we create a new definition

of the data needed at the enterprise or business process level, and then map between that new

definition and the existing systems.

Object-Relational Data Mapping is used to map data between relational data stores (the typical

database today) and objects from an object-oriented design.

5.3.3.8 Function Mapping

As in the case of data, we explicitly call out the mapping between the new services and processes

provided in the enterprise tier, and the existing applications that perform some or all of that

work. The interfaces of the business services are designed based on the requirements of the

business model. Then, those new interfaces are mapped to the existing capabilities of legacy and

mainframe systems.

5.3.3.9 Adapters

A goal of the software architecture is to isolate the implementation of business functionality from

the specifics of how that functionality or information are implemented or stored. This is

achieved through the use of adapters, or special insulating layers. In the case of an existing

legacy or packaged application, this is done with an application adapter. In the case of data, this

is done with a resource adapter. A common type is an XML-based adapter that transforms a

standard XML document into various schemas to allow homogenous consumption.

5.3.3.10 Application Adapter

The application adapter provides a new, modern programming language interface to some

existing application functionality. The adapter must then somehow invoke the existing

application to perform the work. Typically, some type of protocol and/or communications

translation is necessary for this.

The application adapters are implemented as part of the resource tier. They may use some other

element, such as a messaging service to gain access to the packaged application. Many

application adapters are provided as part of the EAI infrastructure.

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 54 11/24/2010

5.3.3.11 Resource Adapters

The resource adapter provides access to information resources that exist in one or more parts of

the system, such as a database or as part of an existing application. The resource adapter is

responsible for providing the data mapper with access to that data. In many instances, the

resource adapter will be a standards-based component, such as an ODBC driver. However, when

the data resides in legacy applications, the resource adapter may be much more customized.

5.3.3.12 Data

The actual information stored in databases, systems of record, and applications. Within the

category of Data as an architectural element, an application must design how data is collected

(Data Assembly) and how it is transferred between components and between itself and other

applications (Data Transfer).

5.3.3.13 Existing Systems

Existing systems are the legacy, COTS, and other systems and applications that provide existing

functionality.

5.3.4 Integration Capabilities

Exhibit 5-7 presented an improved version of the 5-layer model that provided a more detailed

and technology independent application architecture. However, there are several additional

concepts that we need to introduce to meet all of the requirements of the DOI. Exhibit 5-9 adds

the integration concepts of function routing, event mapping and integration services.

5.3.4.1 Function Routing

One of the fundamental tenants of architecture is separation of concerns. There are many

different separations, such as the separation of presentation from business logic as promoted by

n-tier architectures. Integration technologies have promoted the separation of routing logic from

business logic. This allows the routing to be optimized in the infrastructure, separate from the

application business components. The routing function architecture element represents this

routing logic. It can be mapped to multiple different technologies, such as a content based

routing service in an ESB product, or routing specification in an integration broker.

5.3.4.2 Integration Service

Traditionally, EAI technologies have been used for bringing the functionality of legacy and

COTS applications into the overall enterprise. The introduction of SOA as a design paradigm

requires an addition to the traditional EAI approach. Integration services are a specific use of

SOA platform technologies, usually Web Services or ESBs, for implementing the integration of

legacy systems.

There are two major types of integration services that are used in the enterprise:

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 55 11/24/2010

 Data integration services – this type of integration service is created to provide data

integration between multiple applications. They are usually invoked by the application or

legacy system in which data has changed. The data integration service pattern is usually

implemented in cases where multiple applications work mostly independently, but data

changes in one applications impact the functioning of other applications.

 Functional integration services – this type of integration services is created to provide

shared functionality between multiple applications. It is invoked by the application,

requiring the functionality. The functionality can be complex, or as simple as getting or

setting the other application‘s data (in which case it is still data integration, but

implemented through an exposed functional interface).

Integration services share a lot of technologies with business services, but architecturally they are

very different:

 Integration services are not exposed directly to the enterprise business processes, but

rather to other services which are responsible for wrapping ―integration services‖ in order

to expose them to the enterprise. These services serve as a wrapper (implementing the

functional or data mapping elements) thus separating the enterprise business services

(which are defined based on the business and information architecture) from the APIs and

data of the existing applications.

 Unlike business services, integration services don‘t have to be coarse granularity. The

granularity of the ―integration service is defined by the granularity of the functionality

exposed by the application.

 ACID transactions are often a required property of the integration services, especially

when setting data to the application.

 The business service implementation exposes existing legacy system functionality by

encapsulating the integration service, which allows for extension of the legacy system

functionality without touching existing legacy systems. It also makes it possible to increase the

granularity of the service by combining the functionality of multiple legacy systems (or multiple

interfaces of the same legacy system) and implementing additional functionality. The integration

service implementation also allows for the rationalization of legacy data and alignment with the

enterprise data model.

5.3.4.3 Function and Event Mapping

Mapping to existing applications and EAI technologies requires two different approaches. In

some scenarios, the integration requires mapping of existing application functions to a new

interface semantics (application function mapping). However, other scenarios require mapping

between the new integration service and an event driven interaction style such as publish /

subscribe within the integration infrastructure. This requires an additional event mapping.

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 56 11/24/2010

5.3.5 Multi-channel Target Architecture

Exhibit 5-9 adds the concepts of multiple access channels, business documents and, service

compositions and defines specific services in the foundation service layer to arrive at the target

version of the architecture.

Exhibit 5-9: Multi-channel Target Architectural Elements

Presenta ion

user enterpriseworkspace resource

View

Controller

Session

Controller

Session

State
User

Profile

Mediator Business

Function

Data

Mapping

Function /

Event

Mapping

Data

Existing

Systems

Business

Entity

Resource

Adapter

Application

Adapter

Service

Composition

Message

Handler

Business

Document

Processing

Mediator

B2B Channels

User Interface Channels

Configuration

Service

Logging

Service

Exception

Mapping

Service

application

serviceBPM

Service

Workflow

Service

Integration

Service

Business

Component

Func ion

Routing

5.3.5.1 Service Composition (business process)

The service composition presents a higher-level business service or business process that is

constructed by composing several lower level services together. A business process model

should be used to describe the business composition as a sequence of activities and decisions. A

business process management system should be used to execute the model and invoke the

underlying services. We identify two major compositions that differ in terms of scope and

granularity.

 Business Process – A high level process that spans business domains within (or outside)

the enterprise.

 Business Service – A high level service that provides functionality at the line of business

level.

For performance and scalability concerns, it is useful for the enterprise tier to present application

functions to any requesters (including the user interface elements) that perform higher level units

of work, rather than exporting the smaller units of business functionality to the user-workspace

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 57 11/24/2010

domain. The service composition provides this level of functionality by accepting requests for a

given composition, and then invoking, in the appropriate sequence, those services that will

execute business functions required to perform the business service.

The interface between mediator and service composition is also frequently the interface between

machine boundaries, so a larger granularity interface is required here to achieve well performing

distributed applications, particularly in remote client and Telework scenarios.

Once the session (as part of the user workspace domain) has collected a ―unit of work‖ worth of

data, it is ready to be passed to the business composition by the mediator. Therefore, the two

artifacts are functionally closely related, and are often found in the execution of a single business

process. Exhibit 5-10 shows a high level view of this interaction.

Exhibit 5-10: Mediator-Service Composition Interaction

Service Composition Business Service 2

Business Service n

Business Service 1

Session ControllerView Controller 2

View Controller n

View Controller 1

Presentation n

Presentation 1

Presentation 2 Mediator 8:

1:

6:

5:

4:

2:

3: 7: 9:

This view clearly expresses the following relationship cardinalities:

 many to one relationship between view controller and session controller

 one to one relationship between mediator and service composition

 one to many relationship between service composition and business services

The session controller cycles through collecting input and navigating to the next page until all of

the input screens for a particular use case have been processed. The mediator is then used to

request enterprise tier processing of the data. The first step of the business composition may be

to start a transaction (if required) and then to execute all of the steps of the process model. When

that is finished, the transaction is completed.

5.3.5.2 Message Handler and Business Document Handler

Many systems are not exclusively focused on user interface interaction. DOI has numerous

examples of data that comes into the system via files. There are two basic steps in processing

this data. First, the message data must be received. This is the responsibility of the message

handler element. It may involve receiving a file via an ftp transfer, via a message queue (such as

JMS, WebSphereMQ, or MSMQ), or via a web service or some other mechanism. (See Section

11.2.2 for a discussion of various Web Service standards.)

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 58 11/24/2010

Once the message is received, the ‗business document‘ needs to be extracted from the message

and transformed to some understood format (note that transformation is not required when the

document is received in the required format). This is the responsibility of the business document

handler. For example, it may be required to separate multiple applications that are sent in a

single file into individual applications. Then, the data needs to be processed and perhaps pre-

validated. Again, this is the responsibility of the document handler, which essentially maintains

a ―session‖ for the data coming in, and then presents that data to the same enterprise tier

interfaces as used by user interface applications. In other words, a document handler is a special

kind of controller/mediator for automated or B2B exchanges.

Exhibit 5-9 illustrates this computer-to-computer access style with the ―B2B Channel‖ box at the

top of the user/workspace tiers. It also shows the ‗User Interface Channel‖ at the bottom of the

user/workspace tiers. Notice that both of these represent different access mechanisms for getting

to the enterprise tier. However, both channels use the same business process in the enterprise

tier. This is extremely important in achieving consistent processing, reducing complexity and

redundancy and achieving other enterprise goals. The ability to support multiple channels with

the same business process is one of the main motivators of the tiers, boundaries, and roles and

responsibilities of the application architecture.

5.3.5.3 Service Layer

Foundation Services are common units of functionality,

.

Services can span several different logical tiers, i.e., the same service could be used by elements

in the workspace, enterprise, and resource tiers. Services should be implemented in a common

manner and conform to an overall service architecture. For DOI we have identified the

following services:

 Configuration – Provides a common mechanism for applications and services to get

runtime configuration information. This is especially important as more services are

introduced because runtime configuration is one of the major customization mechanisms

for service.

 Logging – Provides a mechanism for writing log and debug information, and correlating

the information from multiple distributed services with the same invocation.

 BPM (Business Process Management) – Provides a mechanism for composing finer

grained business and utility services into higher grained business processes. It also

provides transactional coordinating of multiple business services together into an atomic

unit of work.

 Workflow – Provides a mechanism for managing and organizing the flow of tasks in a

business activity. Task may be assigned to individual workers or systems. The

Workflow service manages the assignment and flow of tasks from one worker to the next

within a given activity, and manages the queue of tasks for each worker.

 Exception Mapping – Maps individual AIS exceptions to common DOI exception

codes.

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 59 11/24/2010

5.4 Application Interface Types

One of the main requirements for the application architecture is to support multiple different

client access or GUI styles with common processing in the enterprise tier. The client channels

are implemented in the user and workspace tiers. The following table (Exhibit 5-11) lists the

standard application interface types.

Exhibit 5-11: Application Interface Types

Interface Type Advantages DTSRAdvantages

Thin Client  Runs on any type of client system
that supports a web browser
(including some mobile devices)

 Easy to deploy and manage

 Cannot provide richness of
functionality

 No local storage
 May have performance issues, with

either network and/or client device

Thick (or Fat)
Client

 Richness of functionality
 Can have direct access to enterprise

resources or data

 Difficult to deploy, manage and
update

 Non-managed access to enterprise
resources

 Duplication of logic

 Architectural separation

Rich (or Smart)
Client

 Richness of functionality
 Local storage
 Can access enterprise resources or

data
 Automatic update

 May require specific client device
type and OS

 May not externally accessible

Thick client applications are NOT part of the Target Application Architecture for the

dTSRAdvantages mentioned above and because they cannot effectively support the enterprise

remote access scenarios required at DOI (telework, work at home, hoteling). A migration

strategy away from thick client applications is part of the overall telework architecture.

5.4.1 Thin Client

Thin clients are typically the user interface style for public and consumer access to an

organization. Thin clients are also common for external business partners. However, thin clients

are not necessarily used for private (internal), data intensive applications. Exhibit 5-12 illustrates

the typical logic of thin client access. Notice that the client access capabilities are completely

implemented in the user and workspace tiers of the application architecture.

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 60 11/24/2010

Exhibit 5-12: Thin Client Interaction Style

Presentation

View

Controller

Session

Controller

Session

State

User

Profile

Mediator

Local field
Validation

Local

Business

Object

Navigation

Presentation

View

ControllerLocal field

Validation

Application

Logic

Event

Update

Forward

Dispatch

Get

user workspace

5.4.2 Rich or Smart Client

The rich (or smart) client attempts to offer the best of thick and thin clients by automating the

updating and distribution of the application, managing access to server resources, and providing

local processing of data and user interface. Of course, it does this at the cost of added

complexity. The complexity is managed by the emerging frameworks to support rich clients

(Java Server Faces, AJAX and .NET Smart Clients).

Exhibit 5-13 illustrates a typical rich client implementation. Notice that the client process

resides in the user and workspace tiers because it operate on behalf of a specific user, not on

shared enterprise resources.

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 61 11/24/2010

Exhibit 5-13: Rich or Smart Client Implementation

Remote

Application

Local

Application

Presentation

View

Controller

Session

Controller

Session

State

User

Profile

Mediator

Local

Business

Object

Navigation

user workspace

Caching

Configuration

Management

Management
Exception

Handling
Logging

Updating

OfflinePresentation

View

Controller

Application

Logic

Data

Access

Deployment

S
y
n

c
h

ro
n
iz

a
tio

n

5.4.3 Enterprise Remote Access

Congress passed the Federal Telework Mandate in 2001. The intent of the mandate was to

encourage agencies to provide eligible Federal workers the option of a telework or hoteling

environment. The Enterprise Service Network (ESN) group provides remote access to some

DOI employees, and is planning for enhanced remote access services for normal telework as well

as access in the event of a pandemic.

5.5 Service-Oriented Architecture

Service Oriented Architecture (SOA) is a composite concept describing both a mode of business

process implementation (as an orchestrated collection of services) and prescribes a new way of

delivering those services though information technology. Thus it is a process organization

concept and a system development paradigm. SOA is a distributed architectural style that

emphasizes interoperability, reuse, and separation of concerns. A service-oriented system is

built from independent service components that discover, interact, and use each other.

At the enterprise level, one of the major goals of an SOA is to build up a library of services that

can be combined together into business processes to support and improve enterprise business

goals. The use and combination of these services is a focus of business and application patterns

described above. In order to achieve this, it is not sufficient to simply build random services,

even if they are individually well designed. The SOA must deal with both the construction of

services and the combination of them.

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 62 11/24/2010

Exhibit 5-14: High-level Aspects of SOA

Business

Model

Common

Semantics

and Data

Infrastructure

and Frameworks

Enterprise

Business Process

Application

Service

Adapter

Service
define

‗Service Bus‘

Processes,

Guidelines,

Tools

Specifies Definition

and requirements

of a service

Defines tools, processes

and technology for combining

services into EBP

Defines communications technology

for application integration

Specifies service

wrapping

techniques

Defines common

semantics and data

5

1,2

4

3

6

An SOA should describe the following aspects of services:

1. The granularity and types of services;

2. How services are constructed;

3. How existing packaged and legacy systems are integrated into the service environment;

4. How services are combined;

5. How services communicate at a technical level (i.e., how they connect to each other and pass

information); and

6. How services interoperate at a semantic level (i.e., how they share common meanings for that

information).

Exhibit 5-14 illustrates the various aspects that a service-oriented architecture must address. The

numbered circles in the diagram correspond to the numbered list above. Let‘s look at these in

more detail:

 What is a service? – An SOA should define the different types and granularities of

services, such as domain services, infrastructure services, business services and enterprise

business processes. The characteristics (and differences) of each should be clearly

specified. (See Section 5.3.3.5, Business Function.)

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 63 11/24/2010

 How to use services – Services are intended to operate within the larger enterprise

context (semantic and behavioral environment). The architecture must be clear about

how services should be used in an enterprise application (e.g., what standard features they

have, what required interactions there are, how they are invoked).

 How to build services – The Application Architecture must define, within the SA, the

structure of a service and how to build it. For each type of service, the architecture

should specify the:

 Granularity – The appropriate size of the service;

 Type / style of interface – Guidelines for interface design. For example, business

services should be accessed via network interfaces that have different performance

requirements than local interfaces have.

 Configuration mechanisms – Standard mechanisms for configuring services.

 Other artifacts – The set of artifacts that are required to support a service, such as use

cases, component models and specifications, operation models, documentation, test

plans, etc.

 Associated information – Additional information that should be part of a service to

support run time and design time inspection, such as version, author, date, keywords,

etc.

 Dependency management and other patterns – Specific design patterns that should be

followed to keep services independent and reusable.

 How to find, evolve and maintain services – The architecture must describe the

complete lifecycle of services, including versioning and backward compatibility

requirements.

 The application infrastructure required to support services – A service is not

valuable in isolation. Rather, its value lies in its ability to be combined with other

services to create an agile enterprise. To do this, it must be designed to fit into a specific

environment. This environment (infrastructure) and the services it provides must be

described by the architecture.

 The enterprise service bus (ESB) – In addition to the application infrastructure, the

communications infrastructure to enable services to integrate must be specified, along

with the guidelines for using that infrastructure. This includes:

 The communications mechanism – How messages, requests and data are transported.

This could be an HTTP connection to a web service (see Section 11.2.2, Web Service

Standards) or any other communication protocol.

 Failover mechanisms – How communication failures are handled, including failover

and recovery.

 Discovery and location transparency – How services are advertised and discovered in

a location-transparent manner.

 Contract negotiation – How service contracts are established between consumer and

provider.

 How to integrate existing applications into the service environment – The reality is that

much of the business functionality at DOI today is not in the form of a service. An

essential part of an SOA is how this existing functionality can be exposed as services and

connected to the service bus. The SOA must specify the general mechanism for defining

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 64 11/24/2010

these services, wrapping them and connecting them to the bus, with specific

implementations for the most common type of system.

 How to combine services into larger enterprise business processes – An important goal

of an SOA is to enable the reuse of services throughout the enterprise to support a variety

of different applications. The SOA must describe the methods, tools and infrastructure

for combining services into larger business processes.

 Common enterprise semantics and data definitions – The SOA must define the

common semantic environment in which the services operate. For example: What data

schema must be common throughout DOI for consistency and interoperability? How do

 Business model – A business model is key to understanding the requirements for a

common environment, especially for shared data. The SOA does not necessarily define

the business model, but must define how the business model is used to design domain,

business and enterprise business processes, and how it drives SOA requirements.

 The development environment / frameworks / infrastructure / tools required to

support the SOA program – It is not enough to describe what services are; the

architecture must enable the easy and efficient creation of those services.

 The metrics for measuring program success – An SOA is only effective if it meets the

business goals that drive the SOA program. The architecture must choose metrics to

demonstrate those goals and a method for collecting and reporting those metrics.

5.5.1 Enterprise Service Bus

The Enterprise Service Bus (ESB) is the infrastructure which underpins a fully integrated and

flexible end-to-end service-oriented architecture (SOA)
1
. The ESB enables an SOA by

providing the connectivity layer between services. The definition of a service is wide; it is not

restricted by a protocol, such as SOAP (Simple Object Access Protocol) or HTTP (Hypertext

Transfer Protocol), which connects a service requestor to a service provider; nor does it require

that the service be described by a specific standard such as WSDL (Web Services Description

Language), though all of these standards are major contributors to the capabilities and progress

of the ESB/SOA evolution. A service is a software component that is described by meta-data,

which can be understood by a program. The meta-data is published to enable reuse of the service

by components that may be remote from it and that need no knowledge of the service

implementation beyond its published meta-data. Of course, a well-designed software program

may use meta-data to define interfaces between components and may reuse components within

the program. The distinguishing feature of a service is that the meta-data descriptions are

published to enable reuse of the service in loosely coupled systems, frequently interconnected

across networks.

What do we mean by ―publishing‖ a description of a service? Descriptions of the services

available from a service provider can be made accessible to developers at the service requestor,

possibly through shared development tools. The ESB formalizes this publication by providing a

1
 http://researchweb.watson.ibm.com/journal/sj/444/schmidt html

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 65 11/24/2010

registry of the services that are available for invocation and the service requestors that will

connect to them. The registry is accessible both during development and at runtime. Components

such as J2EE** EJBs** (Java** 2 Enterprise Edition Enterprise JavaBeans**) or database-

embedded functions may be published as services, but not every J2EE EJB is a service, and not

every J2EE EJB is accessible by means of the ESB. In general, EJBs need additional meta-data,

and possibly additional bindings, published to the ESB registry in order to make them available

as services.

Publication of the service requestors and providers allows their meta-data to be administered

through the ESB registry and enables their relationships and interactions to be visualized and

updated. Nonetheless, ad hoc requestors and providers may also connect to the ESB without first

being registered, for example, subscribers to a ―publish/subscribe‖ topic. In that case, their

interactions will not benefit from the full dynamic capabilities of the ESB, described later.

The ESB populates the registry with meta-data about services in three different ways. When

services are deployed to the runtime environment, they can be simultaneously and dynamically

added to the ESB; meta-data associated with components already deployed can be explicitly

added to the ESB; or the ESB can discover services and service interactions that are already

deployed and incorporate meta-data describing them in the registry.

Note that the ESB is the infrastructure for interconnecting services, but the term ESB does not

include the business logic of the service providers themselves nor the requestor applications, nor

does it include the containers that host the services. Hosting containers and free-standing

applications are enabled for interaction with ESBs with varying levels of integration, depending

on the range of protocols and interoperability standards supported. Most containers (e.g., J2EE

application servers, CICS*, Microsoft .NET**) integrate with an ESB across the SOAP/HTTP

protocols, but fewer have direct support for SOAP/JMS (Java Messaging Service) over a

particular brand of JMS provider. After the ESB has delivered its payload to a container, its

responsibilities are fulfilled. Within the container, the service invocation may be redirected

among the machines in a cluster, or it may be responded to from a local cache. These are some of

the normal optimizations within an application server environment, and they complement the

routing and response capabilities of the ESB between the service providers it interconnects.

Similarly, the ESB is the connectivity layer for process engines that choreograph the flow of

activities between services. The process engine is responsible for ensuring that the correct

service capabilities are scheduled in the correct order. It delegates to the ESB the responsibility

for delivering the service requests, rerouting them if appropriate.

A core tenet of SOA is that service requestors are independent of the services they invoke. As a

result, it is not surprising that the ESB is essentially invisible to the service requestors and

providers that use it. A developer can use an API (application programming interface), such as

JAX-RPC (Java API for XML-based RPC [remote procedure call]) to a Web service, or

distribute messages with the WebSphere* MQI (Message Queue Interface) to a message queue,

without considering whether these requests are flowing directly to the service or are traversing an

ESB. Similarly, a service provider can be written as a J2EE EJB or a servlet without any specific

application code to make it accessible through an ESB. Despite this, one of the values of the ESB

is that it takes on the responsibility for many of the infrastructure concerns that might otherwise

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 66 11/24/2010

surface in application code. Thus, although developers can use APIs for service invocation, they

do not need to add logic to .

The ESB virtualizes the services that are made available through the bus. The service requestor,

both in its application logic and in its deployment, does not need to have any awareness of the

physical realization of the service provider. The requestor does not need to be concerned about

the programming language, runtime environment, hardware platform, network address, or

current availability of the service provider's implementation. In the ESB, not even a common

communication protocol need be shared. The requestor connects to the bus, which takes

responsibility for delivering its requests to a service provider, offering the required function and

quality of service. Not surprisingly, the infrastructure of the bus is itself virtualized, allowing it

to grow or shrink as required by the network and workload which it is supporting.

The flexibility that comes from an SOA, and the virtualization it implies, is fully realized by the

dynamic nature of the ESB. All the meta-data, conditions, and constraints used to enable a

connection from a requestor to a provider can be discovered, used, and modified at runtime. For

example, a new implementation of a service in a different geographical region can be published

to the ESB registry, and requests in that region can be routed to it without reconfiguration of the

requestors. A service requestor might select a reduced level of assured delivery and see an

improved level of performance as the ESB determines that it can use a different delivery

protocol. This flexibility is available as a direct consequence of the role of the ESB registry.

Because all relevant meta-data for the service provider and service requestors has been placed in

the ESB registry, it can be subsequently discovered and used to make dynamic changes.

To achieve much of this flexibility, the ESB accepts requests as messages, then operates on

them, or ―mediates‖ them, as they flow through the bus. Mediations can be an integral part of the

ESB, providing (for example) transport mapping between SOAP/HTTP and SOAP/JMS, or

routing a message to an alternate provider if response times fall below an acceptable value. It is

also a feature of the flexibility of the ESB that mediations can be provided by third parties—by

other products, ISVs (independent software vendors), or customers—to operate on messages as

they flow through the ESB infrastructure. This allows, for example, ISV packages to implement

advanced load-balancing features among services, or customers to add auditing to meet new

legislation. Mediations can be deployed on the ESB without changing the service requestor or

provider.

Mediations are the means by which the ESB can ensure that a service requestor can connect

successfully to a service provider. If a service provider requires one format for an address field

and a service requestor uses a different one, a mediation can map from one format to another so

that the ESB can deliver the service request. If the service provider expects encrypted messages,

a mediation can encrypt the ―in-the-clear‖ service requests as they pass through the ESB. The

ESB can react dynamically to the requirements of requestors and providers when they are

described in their meta-data and held in the registry. In the case of message formats, this is

usually achieved through a schema definition. For other service properties, policy statements,

which may describe the encryption algorithms to be used or the requirements for auditing, can be

associated with the meta-data of the service provider and requestor. The ESB consults this meta-

data at runtime and can reconfigure the mediations between requestor and provider to match the

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 67 11/24/2010

requirements. By annotating a policy for the service providers in the ESB registry, the system

administrator can, for example, ensure that the services meet the company's new privacy

guidelines. Thus the ESB implements an autonomic SOA, reacting to changes in the services it

connects.

One of the major uses of mediations is in systems management. Mediations can be deployed in

the ESB environment to enable request and response messages to be monitored as they flow

through the system, enabling service-level management or problem determination. Mediations

can route service invocations to back-up data centers if there is a local problem or to new service

providers as they are brought online. They can validate messages in terms of their format

correctness, data values, or user authentication and authorization. Through these and other

systems management capabilities, the ESB ensures that a loosely coupled and dynamically

varying SOA is still manageable in a production environment.2

Many of the mediation capabilities just described are core attributes of the ESB, and the

mediations are made available as part of the runtime environment. They are customizable, so

that, for example, a generic table-driven routing mediation can be configured to use a specific

table and a specific field in a message as the key. The ESB also provides tools to configure the

interactions between services—to display the services available in the ESB, to interconnect them,

to add policy requirements to a service or group of services, to identify mismatches in the

endpoints, and to associate mediations to correct these, either explicitly or through automatic

reconciliation of their policy declarations.

Much of the preceding discussion uses the terms service requestor and service provider, as is

appropriate for the ESB. Service requestors and service providers are equal partners in the

interaction, with the requestor simply being the endpoint that initiated the interaction. The

interaction may continue with either endpoint sending or receiving messages. The ESB supports

many different types of program interaction: one-way messages as well as requests and

responses, asynchronous as well as synchronous invocation, the publish/subscribe model, where

multiple responses may be generated for one subscribe request, and complex event processing,

where a series of events may be observed or consumed to produce one consequential event. The

ESB is also, in principle, transport and protocol ―agnostic,‖ with the capability to transform

messages to match the requestor's preferred formats to those of the provider. In practice, most

ESBs support SOAP/HTTP, which reinforces its role as an interoperability standard. They also

support a range of other transports and protocols, some for use by service requestors and

providers connected by the ESB, and some for internal communication within the ESB.

5.5.2 Service-Oriented Architecture at DOI

The focus on SOA at DOI is not the construction of a few services, but rather the evolution of the

department‘s enterprise applications to a service-oriented architecture. The SOA requires

support from all of the IEA sub-architectures to accomplish this. For example, the business

architecture needs to identify process and services as the fundamental building blocks of

enterprise functionality. The technology architecture needs to support the publication of

location, the invocation, and the communication bus of services. Likewise, there are several

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 68 11/24/2010

requirements for the application architecture to support SOA and the construction of combinable

services. The application architecture must define the following service attributes:

 Granularity – Not all services are created equal. Services have different granularities

(depth of business activities performed) and different scope. A well-defined set of

granularities provides a functional hierarchy for building composite applications.

 Well-defined interfaces and data – Interfaces should ensure loose coupling and

extensibility. Beyond that, services should have similar interaction styles and data

definition styles. Services that deal with the same enterprise concept (such as a

trademark application) need to use a common definition of that concept in their public

interface.

 Roles, responsibilities, and service grouping – The application architecture needs to

clearly define roles and responsibilities for architectural elements. These roles and

responsibilities lead directly to the identification and grouping of services. Service

groups help to limit the proliferation of services supporting the same functionality. This

depends on the logical focus of the application architecture.

By complying with the TSRA and structuring solutions with service-oriented architecture,

applications will achieve the consistency and commonality that will make them cost effective,

usable, and maintainable. By integrating solutions across the enterprise, DOI can drive cost

down, reduce cycle time, and support a flexible, on-demand business model.

5.6 Component Model

As the process of developing the Solution Architecture (SA) moves from the high-level view

found in the Solution Overview Diagram to more detailed views, it becomes useful to create

multiple models so that specialized views of the architecture can be depicted. Two important

models are the Component Model, which focuses on functional features of the system, and

Operational Model, which focuses on the physical runtime infrastructure on which functional

components will be deployed.

The value of using multiple models arises from the fact that each of these models begins to call

upon different skills and knowledge sets as the level of detail increases. However, since these

two models are dependant upon each other, they cannot be created in complete isolation. So, the

architecting process now becomes an iterative process of defining portions of each of these two

models, then evaluating how each fits with the other, and making revisions that optimize the two

models so they support each other effectively.

A Component Model describes the entire hierarchy of functional components, their

responsibilities, their (static) relationships, and the way they collaborate to deliver required

functionality. A component is a relatively independent part of an IT System and is characterized

by its responsibilities, and eventually by the interfaces it offers. Components can be decomposed

into smaller components or aggregated into larger components. Some components already exist,

but it may be necessary to build or buy others. A component can be a collection of classes, a

program (e.g., one that performs event notification), a part of a product, or a hardware device

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 69 11/24/2010

with embedded functional characteristics (e.g., a Personal Digital Assistant (PDA)). Some are

primarily concerned with data storage. They can be very large or quite small.

A Component Model evolves through several stages taking into account successive system

distribution, the use of specific products, the choice of middleware, and other technologies.

The first level of elaboration (Conceptual) describes the macro level components and a layered

architecture that is built on solid architectural principles such as separation of concerns, and

emphasizes increasing the cohesion within layers and reducing the coupling that exists between

them. This level of elaboration is generally technology-agnostic. This means that it can be

implemented using any technology that supports the selected architectural principles (separation

of concerns, cohesion within layers & reduces coupling).

The second level of elaboration (Specification) helps to structure and refine the model further by

bringing in technology elements such as transport mechanisms, programming models and

protocols. Like the Conceptual level, the Specification level is product-agnostic. This means

that it can be implemented using any product that supports the selected protocols and

programming model.

A third level of elaboration (Physical) realizes the logical components identified in the

Specification level of elaboration using specific products and technologies. This model directly

maps to a technology-specific application Reference Model. It can be closely tied to the

application development tool that is used to implement the system.

The Component Model is described using the following three techniques:

 Component Relationship Diagram

 Component Description

 Component Interaction Diagram

The Component Relationship Diagram and Component Descriptions provide a static view of the

model. The Component Interaction Diagram provides a dynamic view of how various

components interact when the system responds to an event or request.

Since Patterns for e-business are being used, the Application patterns that have been selected

provide a high level tiered topology that can be useful as a starting point for the Component

Model. Runtime patterns and product mappings can be used to identify technical components

that can be included in the Component Model. Therefore, vendors proposing a solution must

provide a high-level component diagram of their proposed product to properly support DOI

Business Services.

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 70 11/24/2010

5.6.1 Component Relationship Diagram

Component Relationship Diagrams can be created using a UML
2
 Class Diagram. Use of this

notation does not imply that all components must be coded in an object-oriented language.

Exhibit 5-15 shows an example of a Conceptual level diagram, with high level components

represented as packages.

Exhibit 5-15: High-level Conceptual Component Relationship Diagram

Presentation Layer

Web Services

Infrastructure

Resource Manager Layer
Application Services

External Systems

Presentation Delivery

Internal Clients

EAI Services

Submission Client

An initial high level component model diagram can be created quickly to show the overall

topology of major functional aspects of the system. This view is not yet detailed enough to

understand fully what each package will contain, but does allow stakeholders to understand the

major features and evaluate the completeness of the architecture.

Exhibit 5-16 shows another Component Relationship Diagram that is the next step in a series of

progressive elaborations. In this component model, packages from the first diagram are shown

in more detail, clarifying responsibilities that each of the original high-level packages will

support.

2
 Unified Modeling Language (UML) is a specification of the Object Management Group (OMG), a not-for-profit

computer industry consortium (www.omg.org). For more information on UML, see www.uml.org.

http://www.uml.org/

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 71 11/24/2010

Exhibit 5-16: Example Component Relationship Diagram

Internal Clients

Case Management
Services

(Client Browser/GUI)

Case Management
Services

(Client Browser/GUI)

Others Services

Application

Services

Resource Manager

Presentation Layer

Infrastructure Services
Business Integration

Services

External Systems

Presentation Delivery

Browser

Portal App

Case Tracking
Services

Incident
Services

Property
Services

Others

Active directory

PKI services Others

NBIRS

Others
Agency

Service Gateway

FTP Services

Case Management
Database

Field Interview
Database

Safety Management
Information Database

Others

5.6.2 Component Description

Each component in the Component Model needs to be described to a level of detail that is

directly related to the level of elaboration of its containing model. The amount of detail that is

needed in a component description is closely related to who will use the model as input, and

what they need to know. The Conceptual and Specification level models are used primarily by

the architect as steps toward the Physical level model. The Physical level model is typically used

as input to fine-grained design activities, at which point there is often a hand-off from architect

to designer, so the Physical level model needs to describe components to the level of detail

needed by the designer.

The Conceptual-level component descriptions are typically brief and succinct. At the

Specification level, decomposition of the model into more fine grained components typically

occurs, and additional detail is often needed to clarify the role of those components. At the

physical level of elaboration, greater detail should be supplied so that there is no chance for

miscommunication between architect and designer. For projects where DOI/Bureaus plan to

implement the initial capability using off-the-shelf applications with minimal customization, the

initial Physical level of elaboration should describe the existing capability within the off-the-

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 72 11/24/2010

shelf applications and the integration effort needed to make them work in the existing

DOI/Bureau infrastructure environment.

5.6.3 Component Interaction Diagram

All models should provide both static and dynamic descriptions. A model should not be

considered complete without both views. The dynamic view of the Component Model can be

represented in a Component Interaction Diagram or Activity Diagram (this template shows

examples of Component Interaction Diagrams, but Activity Diagrams can be substituted).

A Component Interaction Diagram describes a particular collaboration between components.

Component collaborations represent a possible runtime execution. Exchanges occurring between

any two components during collaboration are called ―interactions.‖

A Component Interaction Diagram showing collaborations between the top-level components

(e.g., Exhibit 5-14, Exhibit 5-15) describe system-wide interactions. Component Interaction

Diagrams (associated with more detailed component relationship diagrams) show how the

services requested from a component are realized through collaborations among its contained

components:

Exhibit 5-17: Example High-level Component Interaction Diagram

/ Resource manager Layer/ Application Services/ Infrastructure/ Presentation Layer/ Presentation Delivery

1 : \request\

2 : \authenticate\

3 : \determineServ iceType\

4 : \invoke\

5 : \requestData\

6 : \transform\

7 : \aggregate\

5.7 Operational Model

The Operational (or Deployment) Model focuses on the operation of the solution. It is derived

primarily from the Non-functional requirements (or operational requirements) that are placed on

the application. Like the Component Model, the Operational Model is typically developed

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 73 11/24/2010

through a series of progressively more detailed elaborations (i.e. Conceptual, Specified, and

Physical). At each level of elaboration there may be a need to create more than one view of the

Operational Model so that no single view becomes overloaded by attempting to convey too much

information. By the completion of the physical model, the Operational Model should map

directly to one of the DOI Technology-Specific Application Reference Architectures.

A pattern for e-business describes the logical nodes in the Runtime patterns that have been

selected can be used as the basis for the operational model.

An Operational model can be used for different purposes at different stages of its development:

 As an early basis for design reviews and walkthroughs, including confirmation that the

business problem is well articulated and that there is a viable IT solution.

 As a way of dividing large problems so that each node can be worked on in relative

isolation.

 As the basis for early analysis of non-functional requirements such as performance,

availability, and capacity, including confirmation of the viability of a solution through

specification of the expected non-functional characteristics of nodes and components.

 To identify necessary technical, infrastructure, and other middleware components and

subsystems.

 To allow application developers to modify and elaborate their designs based on an early

view of how the application will be implemented and managed.

 To contribute to early estimates of the cost of the infrastructure to be used both for

budgeting and as part of the business case for the solution.

 As the basis for design reviews and walkthroughs, prior to selecting products.

 As a technical specification against which an architect can evaluate alternative products

or even against which technology vendors can submit tenders.

 As the basis for a check that all the necessary business and technical functionality has

been identified.

At the Specification level, the Operational Model can be used for the following purposes:

 To document the distribution of application and technical subsystems (deployment units)

on preliminary (conceptual or specified) nodes so they can ultimately be installed and run

on physical computer systems

 As the basis for detailed design reviews and walkthroughs, prior to selecting products

 As a detailed technical specification against which an architect can evaluate alternative

products, or even against which technology vendors can submit tenders

 As the basis for detailed prediction of performance, availability and other service level

characteristics (Predictions are based on the overall architecture and the specifications of

deployment units within it. They will have to be revisited, via system tests, when specific

products have been chosen.)

 As the basis for a check that all the necessary business and technical functionality has

been identified

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 74 11/24/2010

 To allow application developers to refine and confirm their architecture and designs

based on a detailed view of all the solution‘s deployment units

 As the basis for cost estimates of the required infrastructure, using technology neutral

costing such as ―$ per megabyte of storage‖

When all specific infrastructure information has been included in it, the Operational

Architecture model is considered to be at the “physical” level, and can be used for the

following purposes:

 As a blueprint for the acquisition, installation and subsequent maintenance of the

application

 To document how elements at each location are managed, and what extra systems

management components and nodes are needed at each location.

The Operational Model typically includes the following:

 A diagram of the candidate nodes of the architecture and their connectivity. Nodes are

potential hardware systems (see Exhibit 5-18 and Exhibit 5-19)

 A description of each candidate node, including its purpose and contained software

components (see Exhibit 5-20)

 Several views of the architecture, including a network topology view, an

availability/scalability view, view, and a view of

the development and test environments.

 A walkthrough of a set of business functions. The walkthrough demonstrates the

interaction of both nodes and components to accomplish specific tasks.

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 75 11/24/2010

Exhibit 5-18: Example Operational Model Diagram (J2EE Conceptual Level)

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 76 11/24/2010

Exhibit 5-19: Example Operational Model Diagram (.NET Conceptual Level)

Exhibit 5-20: Example Node Description Table

Node Name Node Name

The purpose of this node is …

Presentation function

Processing function

Data

Infrastructure

Presentation services

Processing services

Data services

Hardware

Operating system

Connections

Management

Components contained

Non-Functional Requirements

Users and Presentation

Performance and Capacity

Availability
Cost and

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 77 11/24/2010

Risk

Node Management

The Conceptual Level Operational Model is the basis for additional views that add increasing

detail and focus on specific operational aspects of the solution. It is risky to try to capture all

operational aspects in a single diagram since the diagram becomes so complex that it is

incomprehensible and ineffective. Exhibit 5-18 and Exhibit 5-19 are examples of Operational

Model Diagrams for J2EE and .NET at the Conceptual Level.

This Operational Model view identifies specific hardware nodes that will support deployment of

components from the Component Model. We can consider this a Physical Level of elaboration

since it identifies specific (not conceptual) operational elements of the architecture, the actual

number of nodes of various types (chosen and configured to support non-functional requirements

such as performance, capacity, availability), and node placement and connection. In this view

hardware nodes are emphasized, while network connections are shown in less detail than may be

needed to fully understand how to configure the network. Another view can be created that

emphasizes network topology details, and de-emphasizing the visual detail of the hardware

nodes. Vendors proposing an DOI solution must provide the physical layout of the DOI solution

to meet the non functional requirement. In addition, the physical mapping must follow Exhibit

5-18 or Exhibit 5-19 and Exhibit 5-20 of the Operational Model Diagram.

5.7.1 J2EE Application Reference Model

The DOI J2EE Reference Architecture document is the official guidance for the development of

custom software based on J2EE and related technologies at the DOI. It describes how to best

leverage J2EE technology within DOI and highlights the key architectural topics that have the

greatest impact on the success of a J2EE development project. Exhibit 5-18 comes from the

J2EE Application Reference Model.

5.7.2 .NET Application Reference Model Overview

The DOI .NET Reference Architecture document is the official guidance for the development of

custom software based on Microsoft .NET and related technologies at the DOI. It describes how

to best leverage .NET technology within DOI and highlights the key architectural topics that

have the greatest impact on the success of a .NET development project. Exhibit 5-19 comes

from the .NET Application Reference Model.

5.8 Architectural Decisions

This section describes and captures the rationale and justification for key decisions that affect the

architecture. This capability in the SA process provides crucial traceability for the decisions that

affect the architecture of a system. Architectural Decisions are most effectively documented

when they are organized by subject area. A heading should be placed before each decision so

that it can be included in the table of contents.

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 78 11/24/2010

Decisions should be given a short name and assigned a date and status that indicates if the

decision statement is draft, or approved. If a decision needs to be revised, that change should

also be noted, along with the date of the decision. Each decision should also be assigned a

unique number, and the number system can include an abbreviation for the subject area to

simplify maintaining the numbering scheme.

The following table can be used to document architectural decisions:

Exhibit 5-21: Architecture Decision Table Form

Subject Area Topic Status

(choose one)
AD - AD Tiers

AM - Application Models

DD - Data Distribution
DV - Distribution Variations
IF – Interfaces
TC - Technology Components
Other

(short name for this decision) Draft/Approved/
Revised 2002-mm-dd

(author initials)

Architectural
Decision

A concise statement of the decision.

(note: the id to the left is a combination of two
letter abbreviation for the subject area, and a
sequential number. These should not be
renumbered)

AD ID xxNNN

Problem
Statement

A description of the problem this decision is related to.

Assumptions Any pre-existing assumptions or constraints

Motivation What is behind the decision thought process, the key principals that apply

and what weighting of principals or qualities is being applied.

Alternative 1

Alternative n

Decision Short description of decision (i.e. which alternative was selected – the
alternatives should have explained themselves already)

Justification Primary reason(s) why the alternative was decided upon

Implications What this means for the system, directly or indirectly

Derived
requirements

If this decision adds some implicit new requirements, what are they?

Related
Decisions

A list of any decisions that are closely related to this decisions

5.9 Test-Driven Development

Test-driven development is a proven technique (often associated with ―Agile Programming‖
3
)

for ensuring quality deliverables. The approach uses a testing tool such as JUnit (for J2EE) or

NUnit (for .NET) to create test cases that can be run again and again.

3
 For more information on Agile Programming, see www.agilealliance.org. Note that Agile Programming is often

associated with another concept, eXtreme Programming. Extreme programming practices are typically not

acceptable for government development projects.

http://www.agilealliance.org/

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 79 11/24/2010

A test case is created for each requirement and/or condition in the software. Each test case

executes one or more components with set test data and determines whether the test was

successful. As components are developed, all test cases for each component are run until all

execute successfully. Before software is checked into a Configuration Management tool, all test

cases for all components should be run to ensure that the added or changed software did not

break any other components. Normally, running all test cases should be as simple as a single

click with the results displayed in a dashboard that immediately alerts one to any failed tests.

The test cases should also be executed before deploying a build of the components.

5.10 Mapping the SRM to Solution Functionality

According to the FEA, ―the Service Component Reference Model (SRM) is a business and

performance-driven, functional framework that classifies Service Components with respect to

how they support business and/or performance objectives.‖ It is intended for use supporting the

discovery of business and application service components to provide a foundation to support

reuse of applications, application capabilities, components, and business services.

Mapping the appropriate SRM service components to high-level components in a Solution

Overview Diagram (SOD) provides an initial opportunity to identify related TRM technical

service standards for solution components. This process should be repeated at a number of

points during the solution lifecycle. For example, opportunities for infrastructure component

reuse might only be identified after a solution‘s larger application components have been

mapped to operational models. Many of the technical standards mapped in this manner may not

apply to a given solution, but it is important to examine current and preferred assets to determine

whether reuse is possible. Exhibit 5-22 shows several service components mapped to the

 DOI Target Solution Reference Architecture

Chapter 5 – Application Architecture 80 11/24/2010

Exhibit 5-22: SRM Mapped to SOD

Using this example, one can examine the technical service standards related to SRM‘s Self

Service component (Customer Initiated Assistance type within the Customer Services domain),

such as Authentication/Single Sign-on, Help Desk, Performance Management, and Software

Distribution. Here, for example, Software Distribution most likely does not apply to this

example but there may existing solutions within the Authentication/Single Sign-on standard that

can be leveraged.

 DOI Target Solution Reference Architecture

Chapter 6 – Technology Architecture 81 11/24/2010

6 Technology Architecture

The Technology Architecture applies to the Solution Architecture by guiding the following

decisions:

 On what platform will the solution run?

 What components of the technology-specific Application Reference Models are required

for the solution?

 What business functionality and infrastructure components can be reused or purchased as

COTS products?

To these ends, DOI Technology Reference Model (TRM) provides guidance on preferred

technology specifications. The CTO Council (CTOC) is responsible for developing, managing,

and maintaining the TRM. The CTOC is also the Change Control Board for all enterprise

business IT solution and infrastructure changes that have impact across the Department and

adjudicates conflicts related to technology standards and policy between technical communities

within the Department.

The DOI TRM and Service Component Reference Model (SRM) are part of the Interior

Enterprise Architecture (IEA) in accordance with OMB‘s Federal Enterprise Architecture (FEA).

All IEA models are contained in the Department Enterprise Architecture Repository (DEAR),

available at www.doi.gov/ocio/architecture/dear.htm. In addition, most bureaus have a Bureau

Enterprise Architecture Repository (BEAR) and a bureau-level TRM.

A Service Oriented Architecture places demands upon the infrastructure that are different from

traditional application architectures. A flexible, virtualized IT infrastructure is required to

rapidly respond to on demand needs
4
. A collaboration of several IBM business units has defined

the On Demand Operating Environment (ODOE) to provide a set of integration and

infrastructure-management capabilities to enable this rapid response. These modularized

capabilities can be selected as needed and combined into various solutions to satisfy the needs of

a company's on demand business initiatives. The ODOE (see Exhibit 6-1) enables a

multidimensional infrastructure framework to facilitate SOA, support pluggable application

services and business processes, and create business partner services, choreographed processes,

and utility and resource virtualization.

4
 http://researchweb.watson.ibm.com/journal/sj/444/bieberstein html

http://www.doi.gov/ocio/architecture/dear.htm

 DOI Target Solution Reference Architecture

Chapter 6 – Technology Architecture 82 11/24/2010

Exhibit 6-1: On Demand Operating Environment

The need for an SOA-capable infrastructure that supports the unique requirements of service

operational management is often overlooked until after an initial set of services has been

deployed. Experience has shown that traditional IT management products cannot support

maintenance of service-based systems. Investment in an ODOE is critical for implementing

service access management products in conjunction with other operational tools that monitor and

manage service responses and requests. Enterprise repositories, such as Universal Description,

Discovery, and Integration (UDDI), and approaches based on the Reusable Asset Specification

(RAS), provide support for an enterprise-wide, systematic, and regulated pattern of reuse.

 DOI Target Solution Reference Architecture

7.1 User Levels and Procedures

User roles and procedures is the primary focus of To

implement a solution, procedures must be defined that will allow the

appropriate users to access and interact with the solution.

 DOI Target Solution Reference Architecture

Chapter 7 – 84 11/24/2010

particular project data must be appropriately restricted. There may also be a need to define roles

for update versus read-only access to groups of data.

7.3 Application Policy and Boundaries

7.4 in the Technology Architecture

 DOI Target Solution Reference Architecture

Chapter 8 – Using Solution Architecture 85 11/24/2010

8 Using Solution Architecture

Exhibit 8-1 illustrates the ‗Architecture Driven Design‘ process. Each of the different BDATS

sub-architectures (shown in rectangular, shadowed boxes) is driven by a set of enterprise

requirements (shown in rounded rectangular boxes). We also introduced two additional

architectures concerned with the implementation and operation of IT systems.

Exhibit 8-1: Architecture Driven Design

Enterprise Architecture

Technical

Architecture

Technical
Requirements

Application
Architecture

Program
Requirements

Operational

ArchitectureOperational
Requirements

Deployed

Service

Enterprise
Requirements

Application
Requirements

Application

Analysis and Design

Implementation
Architecture

Implementation
Requirements

Application

Implementation

Business

Architecture

Business

Requirements

Data

Architecture

Information
Requirements

Each application has its own set of unique requirements. However, the application does not exist

by itself; it exists in the context of the overall DOI enterprise. So, we use the business,

information, application and technical architectures as a starting point for the analysis and design

of a DOI application.

The application will fit into the architectural styles that are supported by the application

architecture and technical architecture. If, for example, the application has a requirement for

document scanning, it will use the patterns and services defined by the application patterns

portion of the application architecture. The business processes and information required and

supported by the application will conform to the business and data architecture of the enterprise.

Within this larger context, the application analysis and design are performed following the

technology independent application architecture. When it is time to implement it, a technology

choice must be made (unless the decision is made to use existing assets). The implementation

architecture describes how to implement the application architecture on a specific technology

choice (described by the technology architecture), taking into account tools and development

 DOI Target Solution Reference Architecture

Chapter 8 – Using Solution Architecture 86 11/24/2010

processes. The platform-specific Reference Architectures illustrate the basic organization of an

application‘s tiers and layers for J2EE and .NET applications.

After implementation, the application or service will be deployed into production. The

Operational Architecture describes operational aspects such as monitoring, logging, backup, and

replication and deployment aspects such as configuration and topology.

The following procedures are used (as appropriate) to apply the TSRA to a particular solution.

Note that the following list is not meant to imply an order in which the steps must be executed –

many of these steps may be performed concurrently. Also see Appendix B – Solution

Architecture Artifacts for a list of the artifacts mentioned below.

 Business Architecture elements (see Chapter 3, Business Architecture):

 Write a business description

 Draw a Solution Overview Diagram

 Create a Use Case Model

 Define the functional requirements

 Map the business, integration, and composite/custom patterns to the Solution

Overview Diagram

 Data Architecture elements (see Chapter 4, Data Architecture):

 Define the subject areas and information classes required by the solution

 Map solution data to the DOI Conceptual and Logical Entity Relationship Model

Diagrams, identifying common entities or classes

 Create an Entity Relationship Diagram (ERD) for the solution

 Create an Object Role Model (ORM) diagram for the solution

 Determine whether an existing database, a COTS database, or a custom database is

appropriate to use

 Application Architecture elements (see Chapter 5, Application Architecture):

 Determine the appropriate application patterns based on the business, integration and

composite/custom patterns

 Define the Non-functional Requirements (NFRs)

 Determine the application tiers based on the application patterns

 Map the Service Component Reference Model (SRM) service components to the

business functionality

 Determine what business application components can be reused or purchased as

COTS products

 Technology Architecture elements (see Chapter 6, Technology Architecture)

 Decide the platform on which the solution will run

 Determine the components of the technology-specific Application Reference Models

required for the solution

 Decide what infrastructure components can be reused or purchased as COTS products

 elements (see Chapter 7, Security Architecture)

 Determine appropriate user security levels and procedures

 Define the appropriate data security levels

 DOI Target Solution Reference Architecture

Chapter 8 – Using Solution Architecture 87 11/24/2010

 Determine the along with authorization and identification

schemes

At many points in this process, architects should ask whether components of the solution can be

reused or customized from existing DOI applications or can be purchased as standard

Commercial Off-the-shelf (COTS) products. There is no single moment when it becomes

appropriate to ask this question. As soon as the solution overview exists, it may be obvious that

an existing system could be used (as-is or customized) to satisfy part or all of a solution‘s

requirements. It may not be until the solution is mapped in detail to a specific technology

reference model, however, that it becomes clear that a standard COTS product could be used for

one or more components. Whenever it is determined that an existing application or COTS

product can be used in a solution, some of the above steps may be become unnecessary. For

example, buying a COTS product that comes with a standard database structure obviates the

need to create a solution ERD from scratch.

 DOI Target Solution Reference Architecture

Chapter 9 – Appendix A – Glossary 88 11/24/2010

9 Appendix A – Glossary

A general list of terms and definitions follows this table of abbreviations and acronyms.

Abbreviation Definition Comment

AA Application Architecture

ACID Add, Change, Inquire, Delete Also known as CRUD (create, read,

update, delete)

B2B Business to Business Interaction

 Architecture
Repository

BPM Business Process Management Allows composing finer-grained business
and utility services into larger-grained

business processes and provides

transactional coordinating of multiple
business services into atomic units of
work (UOW)

BRM Business Reference Model

COTS Commercial-Off-the-Shelf

CTO Chief Technology Officer

CTOC Chief Technology Officer Council

DB Database

DEAR DOI Enterprise Architecture Repository

DOI United States Department of Interior

DRM Data Reference Model

EA Enterprise Architecture

EAI Enterprise Application Integration

ERD Entity Relationship Diagram

ESB Enterprise Service Bus

FEA Federal Enterprise Architecture

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol Web-based protocol based on IP

IEA (DOI) Interior Enterprise Architecture

IP Internet Protocol

TSRA (DOI) Interior Solution Architecture DOI Target Solution and Application

Architecture

IT Information Technology

J2EE Java 2 Platform, Enterprise Edition Java version for developing and deploying
enterprise applications

JMS Java Message Service

JSP Java Server Pages

LDAP Lightweight Directory Access Protocol

LOB Line of Business
MBT Methodology for Business

Transformation
IEA initiative

MSDN Microsoft Developers Network Reference site

MSMQ Microsoft Message Queue

MVC Model-View-Controller

.NET Microsoft business strategy aimed at a
convergence of personal computing with

 DOI Target Solution Reference Architecture

Chapter 9 – Appendix A – Glossary 89 11/24/2010

the Web

NFR Non-functional requirement

OCR Optical Character Recognition

ODBC Open Database Connectivity

ODS Operational Data Stores

OMG Object Management Group

ORM Object Role Model (diagram)

PRM Performance Reference Model

SDLC Software Development Lifecycle

SDLM Software Development Lifecycle
Management

SLA Service Level Agreement

SLR Service Level Requirements

SOD Solution Overview Diagram

SRM Service Component Reference Model

TRM Technical [or Technology] Reference

Model

Technical Reference Model (FEA),

Technology Reference Model (IEA)

UML Unified Modeling Language Specification from Object Management
Group (OMG)

VB Visual Basic

XML Extensible Markup Language

9.1 Terms and Definitions

Application Pattern – partitioning of application logic and data together with styles of

interaction between the logic tiers (i.e., the shape of an application) needed to satisfy a

particular business pattern

Architectural Style – set of principles, elements, patterns, and constraints designed to meet a

specific set of requirements within a specific scope

Architecture – a style and method of design and construction; the overall structure of a

computer system, including the business processes and the required hardware and

software

Business Area – BRM high-level category used to group LOBs: Services for Citizens (the

purpose of government), Mode of Delivery, Support Delivery of Services, and

Management of Government Resources

Business Pattern – generic description of rules identifying the interaction between users,

businesses, and data

Business Reference Model (BRM) – FEA business-driven framework for describing the

operations of the Federal Government (independent of the agencies that perform them)

within business areas, lines of business, and sub-functions

Component – a constituent part of a system that can be separated from or attached to the system;

a package of services and/or functions designed to work with other components and

applications

 DOI Target Solution Reference Architecture

Chapter 9 – Appendix A – Glossary 90 11/24/2010

Data Reference Model (DRM) – standardized framework by which data supporting government

program and business line operations is described (Data Description), categorized (Data

Context), and shared (Data Sharing); the DOI DRM ERD

Enterprise Architecture – comprehensive framework used to manage and align an

organization's business processes, Information Technology (IT) software and hardware,

local and wide area networks, people, operations and projects with the organization's

overall strategy

Entity Relationship Diagram – graphical representation of entities, attributes used to describe

them, and the relationships between them; principle data modeling tool for relational data

model schemas

Fat Client – client-server architecture term for a client that local performs most of the

application functionality, using a separate server only for data storage (if at all);

politically incorrect term for thick client

Information Class – IEA DRM second-level data category within subject area (also referred to

as a Super Type within the FEA)

Integration Pattern – pattern that does not automate a specific business problem but is used to

integrate two or more business patterns

Line of Business (LOB) – BRM second-level category, a collection of sub-functions within a

business area

Multi-channel – application architecture style that allows multiple access channels to one or

more business services; see also Single Channel

Object Role Model diagram – graphic representation of object (entity types), relationships (fact

types) between them, role the objects play in the relationships, constraints within the

problem domain, and optionally examples (fact type tables)

Pattern - form, template, or model (or, more abstractly, a set of rules) which can be used to

make or to generate things or parts of a thing

Performance Reference Model (PRM) – standardized FEA framework to measure the

performance of major IT investments and their contribution to program performance

Rich Client – hybrid of thick and thin clients with more balanced client and server utilization

with features and functionality of traditional desktop applications, which manage their

deployment and updates and also intelligently connect to distributed services and data

sources (Rich Client is the J2EE term for this type of client, e.g., implemented with Ajax

– see also Smart Client)

 DOI Target Solution Reference Architecture

Chapter 9 – Appendix A – Glossary 91 11/24/2010

Run-time Pattern – description of a set of nodes (i.e., groups of functional requirements)

interconnected to solve a business problem

Service – work or duties done for others; in the context of SOA, any feature or business

application function that may be used an IT component, including all necessary and

relevant network and back-end resources that the feature or application function may use

Service Area – FEA TRM high-level category representing one of four technical tiers (Service

Access and Delivery, Service Platform and Infrastructure, Component Framework, and

Service Interface and Integration), a group of service categories

Service Category – FEA TRM second-level category of technologies and standards; a group of

service standards by business or technology function served

Service Component – SRM low-level category defined as a self-contained business process or

service with predetermined functionality that may be exposed through a business or

technology interface

Service Component Reference Model (SRM) – FEA business- and performance-driven,

functional framework that classifies Service Components with respect to how they

support business and/or performance objectives within service domains, types, and

components

Service Domain – SRM high-level category of services and capabilities that support enterprise

and organizational processes and applications, differentiated by business-oriented

capability

Service-Oriented Architecture – IT architectural concept that defines the use of services to

support the requirements of IT users, in which nodes on a network make resources

available to other participants in the network as independent services accessed in a

standard way

Service Standard – FEA TRM low-level category of services and technologies supporting a

service category, which may provide illustrative specifications or technologies as

examples

Service Type – SRM second-level category within Service Domain that defines the business

context of capabilities

Single Channel – application architecture style that only one access channel to one or more

business services; see also Multi-Channel

Smart Client – hybrid of thick and thin clients with more balanced client and server utilization

with features and functionality of traditional desktop applications, which manage their

deployment and updates and also intelligently connect to distributed services and data

 DOI Target Solution Reference Architecture

Chapter 9 – Appendix A – Glossary 92 11/24/2010

sources (Smart Client is the .NET term for this type of client, implemented with

Windows .NET Forms – see also Rich Client)

Solution Architecture – patterns and practices used to create a product or service that will allow

a particular business task to be accomplished

Solution Architecture Pattern – a description of describes a particular recurring design

problem that arises in specific design contexts, and presents a well-proven generic

scheme for its solution, where the solution scheme is specified by describing its

constituent components, their responsibilities and relationships, and the ways in which

they collaborate

Subject Area – BRM (Data Description) high-level data category, equivalent to a business

activity within an LOB

Technical Reference Model (TRM) – FEA component-driven, technical framework

categorizing (into Service Areas, Service Categories, and Service Standards) technologies

to support and enable the delivery of Service Components and capabilities

Technology Category – IEA TRM high-level category, equivalent to FEA TRM Service

Category; a group of technology standards by business or technology function served

Technology Reference Model (TRM) – IEA version of the FEA TRM, organizing Technology

Specifications by Technology Category (FEA TRM Service Category) and Technology

Standard (FEA TRM Service Standard)

Technology Specification– IEA TRM item, such as an application or product that falls within a

Technology Standard

Technology Standard – IEA TRM low-level category, equivalent to FEA TRM Service

Standard; a group of technology specifications and products

Thick Client – client-server architecture term for a client that performs most of the application

functionality locally, using a separate server only for data storage (if at all); also known

as a fat client

Thin Client - simple client program or device which relies on all data and most of the

functionality of the system being located in the server

Use Case - specific way of using a system by performing some part of the functionality,

constituting a complete course of action initiated by an actor and specifying the

interaction that takes place between an actor and the system

Use Case Model – textual or graphic representation of all use cases for a solution

 DOI Target Solution Reference Architecture

Chapter 10 – Appendix B – Solution Architecture Artifacts 93 11/24/2010

10 Appendix B – Solution Architecture Artifacts

The following table lists the artifacts for a solution complying with the TSRA.

Exhibit 10-1: DOI Solution Architecture Artifacts

Artifact Related Sub-

architecture

Comments Required

Business Description Business Brief narrative Required

Solution Overview
Diagram (SOD)

Business Enhanced in subsequent steps with
business and integration pattern
and service components overlays

Required

Use Case Model Business Diagram or text high-level with
text documenting each use case
and actor

Required

Functional Requirements Business List Required

Solution Subject Areas
and Information Classes

Data List Required

Solution data mapped to
DOI entities or classes

Data List Required

Entity Relationship
Diagram (ERD)

Data Diagram As needed for new
development

Object Role Model
(ORM) diagram

Data Diagram As needed for new
development

Application Patterns and
Tiers

Application Diagram As needed

Non-functional
Requirements

Application List Required

SRM mapped to
business functionality

Application Diagram As needed

Application Reference
Model

Application/
Technology

Diagram Required for COTS
products and new
development

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 94 11/24/201

11 Appendix C – Service Oriented Architecture Roadmap

Service-oriented Architecture (SOA) initiatives are beginning to show up in many enterprises

including the DOI. Not surprisingly, the hype around SOA causes many people within the

enterprise to be skeptical of yet another ‗silver bullet‘ technology. This skepticism is well

founded in light of high profile failures of other ‗wonder‘ technologies (BPR, objects,

components…) to live up to the promises of reuse, improved quality and productivity.

On closer inspection, it turns out that many (if not most) of the reasons for those shortcomings

was the failure of the IT organization to prepare and transform itself for the new technologies.

And while new technologies have improved, and make it potentially easier to achieve the

promised benefits, the root problems continue to be those of organizational transition. Against

this backdrop, the promoters of SOA within DOI face battle-hardened skeptics of yet another

new technology. These skeptics will grudgingly go along with giving SOA one chance to prove

its value, but won‘t believe it until they see it in bits and bytes.

11.1 Rollout Strategy

The formula for a successful rollout at DOI is fairly straightforward: start small, empower the

users, demonstrate value, incorporate lessons learned, roll out to a larger audience. This

approach is designed to quickly demonstrate value and address the skeptics before attempting to

set a major change in motion, and to allow the SOA team to learn and perfect what works best

for their particular organization. It is critical to figure this out before attempting to expand the

program, so that the rest of the organization can be successful with the new technology and

processes. This approach also allows the SOA team to design the necessary supporting

processes, and set the slow, organizational changes in motion so that they are ready when the

other teams need them.

11.1.1 Pilot Project Phase

The first step is to choose an appropriate pilot project, one with the following characteristics:

Important, but not on the critical path; achievable scope (4-6 months); demonstrable value;

addresses a pain point. The best candidate projects will have a user for the new service lined up,

provide a basic business application function that can be used across multiple applications, and

that is discrete enough to run efficiently without adding complexity to itself or the applications

that use it. Before getting too deep into the pilot project, it is important to have a vision of the

goals of SOA for the DOI, and to have high-level architecture, business and information models

in progress that lead the pilot project toward that vision.

Creating these models should take weeks, not months and each should serve a specific purpose.

The architecture should lay out the high level technical direction and standards, and identify

critical areas that need to be addressed by the pilot and the architecture should use the TSRA

architecture as its foundation. The business model should identify high-level business processes

and the underlying services that compose them, including the service being developed for the

pilot. The business model should help to prioritize between candidate projects and identify reuse

opportunities and strategies. The information model should identify the semantics at the service

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 95 11/24/201

and enterprise levels that are required for the identified service to support the enterprise business

process, and be usable across the set of other identified potential uses. The business and

information models should build on the eGov service models being developed as part of the

eGov project.

The pilot project has three important goals. First, to give the core SOA team the opportunity to

learn the ‗what and how‘ of implementing a service at the DOI (Each organization has slightly

different requirements, environment and culture which will dictate the best approach for them).

Second, the pilot project needs to deliver a working service. This goal requires a well-chosen

pilot, and an achievable scope and timeframe. Four to six months is typically a good timeframe

for the design, implementation, and testing of the initial service. Depending on the goals of the

project, the service may or may not be deployed into a production environment. Four to six

people is also a good size for the core team. This will include the architect, analysts, designers,

implementers, testers, and project leader/manager. Although this count does not include the

subject matter experts from the business, it is important to get them involved in the design of the

service, as well as the business and information models. Last but not least, the pilot project is

intended to demonstrate the value of SOA. This means that you must keep track of the time and

effort spent on implementation, have reasonable projections for how SOA delivers value, and

have realistic business scenarios to show how the service will be reused and add value outside of

the initial application.

11.1.2 First Adopter Phase

The goal of the next phase in the SOA rollout will be to expand SOA use and development to

additional projects. We call this the ‗First Adopter‖ phase. Exhibit 11-1 shows a sample SOA

Rollout Plan for the pilot project and the First Adopter phases.

After the pilot project is complete, and before the First Adopter phase starts in earnest, it is

advTSRAble to take two or three months to regroup, plan for the next phase, identify metrics,

incorporate lessons learned, market your SOA efforts, and identify the next set of services and

organizations. Expanding the use of services is a combination of marketing the value of SOA

and identifying good candidates for the First Adopter round of service implementations. As with

the pilot, these services should be valuable and achievable, but also have some additional

requirements.

 The new services should be related to the pilot service implementation so that at least one

of the new services can be combined together with the initial (pilot) service in a business

application. This will begin to demonstrate the potential of SOA in creating higher level,

higher value processes.

 One additional business user should be identified for the initial service. This will help to

demonstrate the value of services as reusable assets. To the business users and sponsors,

consistent processing of a common business application function across multiple

applications may be a more important outcome of reuse than reducing development time

or costs, so look for opportunities to solve an existing incompatibility problem.

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 96 11/24/201

Before selecting the follow-on users (applications) and service implementations, the core team

should update the business and information models to reflect that actual implementation of the

initial service, and to incorporate any lessons learned. These models will be carried forward and

expanded during the First Adopter phase, so they should be correct, and complete enough to help

narrow down the selection of the next set of services. Again, these models should take weeks,

not months of effort to update and develop (avoid analysis paralysis!). Having a related set of

services allows the team to focus on developing these models in more detail, within a limited

scope, and to postpone the issues of expanding into new organizational boundaries until you

have built up momentum and support for the SOA initiative. One of the key challenges and

goals of the information model is to define the service semantics, at a business level, so that they

span and integrate several related services and processes. The First Adopter phase of the rollout

should provide the core team an opportunity to approach this challenge within a controlled

environment.

Exhibit 11-1: Sample SOA Rollout Timeline

Pilot Project Phase

Develop:

– First service

– High-level architecture

– Technical standards v1

– Process v1

– Deploy first service

– Document lessons learned

– Update the high-level arch

– Update bus & info models

– Update the tech stds

– Define metrics

– Update the process

– Checkpoint

– Estimate ROI

– Produce whitepaper

– Engage stakeholders

~ 6 months ~ 6 months

First Adopter Phase

– Expand to 3-5 services

– Reuse first service

– Provide SOA Consulting

– Create common repository

– Define governance process

– Develop maintenance and ops plans

– Collect metrics

– Align with EA

– Begin writing COTS wrappers

– Deploy services

– Document lessons learned

– Update the high-level arch

– Update bus & info models

– Update the tech stds

– Update the process

– Deploy tools

– Measure SLAs

– Report on metrics

– Align with portfolio mgmt

– Market SOA program

~ 3 months ~ 3 months

Implement Refactor Roll-out Refactor

In order to expand development, the core SOA team must make it possible for the new

development groups to be successful with their attempts at SOA. The two most important

components of this are the SOA architecture, and implementation support. The architecture

defines exactly what services are for the particular organization, including the types of services,

interface and interaction style, required interfaces (such as management), how to use the service

technical infrastructure, how to publish and find services, etc. Each time the implementation of

services is expanded to more developers, these aspects have to become more explicit, more clear,

more foolproof. The pilot phase is where these details are first worked out. For the First

Adopter phase, they have to be documented well enough to enable the new service developers to

implement them correctly, but they don‘t have to be perfect, the implementation support will fill

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 97 11/24/201

in the holes. (Note that after the First Adopter phase, you will again incorporate the lessons

learned and update the SOA and process before starting the Rollout phase).

Implementation support is a critical activity for the core team during the First Adopter phase.

For the SOA initiative to be successful, the First Adopter teams have to be successful

implementing and using services. The core team must monitor and assist these implementation

teams to help them work through issues and get their designs and implementations correct. This

will also give the core team first hand exposure into how well the architecture and guidelines are

working.

During the First Adopter phase, the core team will not be implementing any new services,

although they will be updating the initial service to support the new business user. But, the core

team will be very busy. In addition to the implementation assistance, they will have to work out

the issues of service lifecycle and governance. In particular, they will have to plan for who is

responsible for services. At a technical level, that means how will services be versioned? What

will be the development and runtime repository support for services? At a governance level, it

means who owns, defines monitors, and authorizes new services or changes to existing services?

Who is responsible for the provisioning and maintenance of services? How is the alignment of

services with the business and EA maintained? What will the governance structure and

organization be? Note that although governance is responsible for insuring conformance, the

thrust of the governance organization should be to help teams build conforming applications

from the start, not to check up on them at the end. A plan for all of this needs to be developed

during the First Adopter phase, so that it can be executed while the next phase, Rollout, begins,

and be in place by the time it is needed.

The most important activity during the SOA rollout process is the metrics. That means defining

what to measure, measuring it, and reporting on it. During the pilot phase, you will keep

informal metrics, but be thinking about what data will make the best case for SOA value. During

the three-month regroup, the core team will formalize those metrics and include them in the SOA

and development guidelines. During the First Adopter phase, the development teams will collect

these metrics (with any necessary assistance from the core team). At the end of the First Adopter

phase, the core team will collate and report on the metrics. This will be the single most

important evidence of the value of SOA that you can present to management, the sponsors, and

the skeptics. Nothing is more convincing than real, hard numbers! The importance and value of

these metrics cannot be overstated.

SOA can provide significant advantages in moving DOI toward achieving its goals, but provides

significant challenges in adoption. A ‗big bang‘ approach will not be successful. Instead, SOA

has to be eased into the organization while DOI learns the best ways to implement and

incorporate it. The task of the core team is not to figure out what SOA is, but to figure out how

to make the rest of the DOI development organization successful implementing SOA. At the

same time, SOA has to deliver and demonstrate value to the business, by implementing well-

chosen services, and collecting convincing metrics.

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 98 11/24/201

11.1.3 Phased Implementation Approach

Like other architectural efforts, SOA needs to be rolled out while DOI is continuing to deliver

projects and value. Exhibit 11-2 illustrates how each project contributes both to the business and

building up the necessary architecture and infrastructure to sustain SOA at a steady-state.

Exhibit 11-2: Phased SOA Capability Attainment

Project 1
Infrastructure

Project 1
Business
Service

Future
Business
Services

Project 3
Infrastructure

Project 3
Business
Service

Project 2
Infrastructure

Project 2
Business
Service

prioritization

Architecture

Business Models

Infrastructure

effort

% done

time

Process and

Governance

The trapezoidal box at the bottom represents the architecture, infrastructure and business models

that make up DOI SOA capabilities and assets. At the beginning of the first project, there is very

little of this is place. So, the first project has to build some of it themselves, take short cuts in

other areas, and do without certain aspects in order to deliver a service that provides business

value in a reasonable timeframe. At the end of Project 1, some aspects of the infrastructure built

for Project 1 will be rolled into the overall infrastructure (as described in the refactoring

activities earlier).

The next project (Project 2) that comes along will have more of the architecture, models and

infrastructure in place, but still not all of it. So, like the first project it will have to build some

and do without other aspects of it. Again, at the end of Project 2, parts of its infrastructure can

be used to contribute to the overall architecture. At the beginning of each project, a prioritization

is done to choose what will likely be rolled into the architecture based on both the needs of the

particular project, and the larger enterprise architecture context (for example, a capability that

can be used by every subsequent project would be a good candidate for building sooner, rather

than later).

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 99 11/24/201

This cycle is repeated again and again until eventually, the steady state of the architecture is

achieved. This typically takes between 3-6 project cycles, depending on the length/size of a

project. At that point, each new project only needs to build its business services because all the

rest of the infrastructure and architecture is in place. Some adjustments and enhancements to the

infrastructure will always be needed, but they will be a relatively minor activity. Thus, when the

steady state is reached, the amount of time and effort required for new projects is dramatically

reduced.

The oblong box at the top of Exhibit 11-2 represents the development process and governance

capabilities to support building and maintaining services. A similar process is followed to build

up these capabilities. The first project will start with very little process or governance. (Of

course, very little governance is needed before there are any services). Some of the lessons

learned and processed developed in the first project will be carried forward and used by the

second project. At the same time, governance capabilities will start to be developed (as

described earlier in the First Adopter Phase). Subsequent projects will both use and contribute to

the overall process and governance capabilities until the steady state is achieve at which time

new services will be built conforming to the defined standards, processes and governance.

11.1.4 Rollout Summary

The following list summarizes the major activities of an SOA Rollout for DOI:

 Develop an SOA Roadmap for the next 2+ years similar to the sample above

 Establish the high level SOA for DOI

 Align with business goals, Enterprise Architecture and eGov

 Determine important criteria

 Specify what a service is and how to implement on J2EE and .NET

 Start with well chosen initial projects (submitting Form 300‘s) to build expertise and

acceptance

 Important but not on the critical path

 Achievable scope

 Addresses a pain-point

 Demonstrable ROI

 Incorporate lessons learned into architecture and approach. Continue architecture and

infrastructure implementations

 Initiate Service Governance activities and organization

 Identify new applications suitable for service implementation. Expand team and

expertise

 Re-evaluate business needs to decide on next projects. Continue to ‗refactor‘ service,

architecture and infrastructure

 Establish service repository

 Roll out to an expanded group of developers

 Create service implementation frameworks

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 100 11/24/201

The details of the technologies, platform and enterprise capabilities that are implemented in this

phased approach are describe in the following sections.

11.1.5 SOA Maturity Stages

Every organization that adopts SOA goes through a maturation process while they gradually

build up capabilities. The model below provides some common maturity phases that most

organizations will experience. Today, DOI is somewhere between the Skunkworks and

Independent Production Services level of maturity.

 Skunk works – Some developers have independently decided to experiment with web

services as a way to achieve some sort of integration. This phase is characterized by:

 One off projects

 Experimentation with web services

 Web services used for integration of heterogeneous systems

 No service contracts or other SOA concepts

 Independent Production Services – Web services have been built for one or more

projects and have been moved into production. Now, the organization needs to

understand how to manage and support them. It typically takes 6-12 months for an

enterprise to advance from this to the next level. This maturity level is typically

characterized by:

 Move to production of limited web services

 Simple integration with partners

 Wrap legacy systems with web services

 No coordination between projects or services

 No mechanisms in place for support or maintenance

 SOA Program Initiation – There is an official recognition of the importance of SOA

and the need to manage them. This leads to the introduction of an SOA program and the

recognition that an SOA architecture needs to be developed. Some parties have an

understanding of the overall enterprise context that is required to achieve the long terms

goals of the SOA program. It typically takes 12-24 months for an enterprise to advance

from this to the next level. This maturity level is typically characterized by:

 Limited/controlled SOA based project development

 Begin architecture program

 Begin business model

 Begin information model

 Establish governance

 Establish reuse program

 Establish service management capabilities

 Enterprise Rollout – The SOA rollout is well under way. The architecture and

infrastructure has reached a level where it can support mainstream development

activities. Service reuse is fully supported by programs, process, repository, versioning

and taxonomy. It typically takes 12-24 months for an enterprise to advance from this to

the next level. This maturity level is typically characterized by:

 Most new projects will be SOA based

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 101 11/24/201

 Expanded development across enterprise

 Governance in place

 Management in place

 Well established taxonomy and reuse program

 Versioning capabilities

 Service repository supports both development and runtime

 SOE – The Service-Oriented Enterprise. Business processes are implemented by

combining services together based on Business Process Models. Business Process

management systems are well in places. Processes and service design is driven by the

business and information architectures. The SOA architecture, infrastructure and

frameworks are fully mature and in place. A large library of services is in place so that

most projects can be built based on the existing services. This maturity level has the

following characteristics:

 Almost all projects will be SOA based

 BPM systems are mainstream

 New processes are constructed by ad-hoc service integration (i.e. no apriori plan

existed to use the services together)

 Service repository of 100+ services

 Agility to create new processes and services quickly

 Time to market for new applications is greatly reduced

 Overall IT maintenance budget is reduce

 Improved Quality of services

DOI should begin an architecturally based pilot project rollout and the initiation of an SOA

program as soon as possible.

11.2 Technology and Standards

The underlying technology for SOA should be based on Web services. Although they are not

necessarily required, they make the implementation of SOA much easier and inherently support

the concepts and characteristics of services.

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 102 11/24/201

11.2.2 Web Service Standards

One of the requirements for services at DOI is to support development on multiple platforms.

Another requirement is for those services to be able to interoperate. Because of the variation in

web service specifications and versions and the number of ways that they can be used, DOI

needs to adopt a set of standards and practices. Luckily though, DOI does not need to figure it

all out themselves. The Web Service Interoperability (WSI) organization provides a set of

profiles and scenarios that meet the requirements of the DOI. These include:

 Basic Profile V1.1 – The WS-I Basic Profile provides interoperability guidance for a

core set of non-proprietary Web services specifications along with interoperability-

promoting clarifications and amendments to those specifications, including:

 SOAP 1.1

 WSDL 1.1

 UDDI 2.0

 XML 1.0 (Second Edition)

 XML Schema Part 1: Structures, Part 2: Data types

 HTTP 1.1

 HTTP over TLS Transport Layer Security, HTTP State Management Mechanism

 The Transport Layer Security Protocol Version 1.0

 Internet X.509 Public Key Infrastructure Certificate and CRL Profile

 SSL Protocol Version 3.0

 Simple SOAP Binding Profile 1.0 – The Simple SOAP Binding Profile describes the

serialization of the envelope and its representation in the message

 Attachments Profile 1.0 – Complements the Basic Profile 1.1 to add support for

interoperable SOAP Messages with attachments

 Sample Architecture Usage Scenarios 1.0 – Usage Scenarios define the use of Web

services in structured interactions, identifying basic interoperability requirements for such

interactions and mapping the flow of a scenario to the requirements of the Basic Profile.

Other Web service standards are evolving to support Transactions, Reliable Messaging, Routing,

etc. The use of these standards should be isolated within the underlying foundations services.

For example, the transaction service should determine the best use of WS-Coordination and WS-

Transaction standards to meet the needs of DOI. The Workflow service should determine the

requirements and use of WS-ReliableMessaging and WS-Routing. Isolating the use of these

evolving standards to a foundation service also isolates any changes that will be required as the

standards evolve. Only the foundation services will need to be updated, not every application

that uses them.

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 103 11/24/201

11.2.3 Other Standards

A primary goal of SOA is to create reusable services, but how do you describe a reusable

service? What aspects need to be described to support development and runtime? The Reusable

Asset Specification (RAS) that is now part of UML 2.0 provides a complete (perhaps too

complete) definition of what a reusable asset is and how to describe it. DOI should use this as a

starting point for its definition of a service as part of the SOA.

11.3 The SOA Platform

Web services are an important basis for SOA, but much more is required to achieve the higher

levels of maturity outline previously. Exhibit 11-3 illustrates the capabilities required of a

complete SOA platform, which supports the following areas:

 Basic Communications Infrastructure (Service Bus)

 Technology and Infrastructure Services

 Application Integration

 Data Integration

 Management

 Development

At the bottom of the diagram is the Communications Bus. This provides the basic connectivity

for the different services. In the middle of the diagram is the service itself that the SOA is

concerned with creating and supporting. The service is connected to the service bus through its

service interface (Tools generate the code required for the connection based on the interface.).

An important special case is services that are created by wrapping existing applications

(application integration). These services go through the same interface mechanism. Business

services use a variety of infrastructure services to assist in their runtime implementation.

Similarly, the development framework provides a set of capabilities to assist in design,

development and debugging of services. The data integration framework provides business

services with access to enterprise data resources. Finally, the management framework supports

the operations of the infrastructure and services.

Note that the platform example is meant to be representative of most SOA applications at DOI,

but does not present an exhaustive list of all possible services.

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 104 11/24/201

Exhibit 11-3: SOA Platform

Service Communication Bus

Development Framework

Process

Designer

Management

Framework

SLA / Contract

Performance

Data Integration

Framework

Data

Transformation

Operational

Data Store

Data

Aggregation

Runtime

Performance

Metrics

Collection

Reuse

Repository

Service

Interface

Foundation Services

Orchestration

/ BPM

Logging

/ Auditing

SLA

Configuration

Coordination

/ Transaction

XML MetaData

Management

Enterprise

Architecture

Application

Integration

Framework

Application

Adapters

Format

Adapters

Transformation

Editor

Rules Personalization

Reporting

Interface

Designer

Schema

Editor

Registry

11.3.1 Communications Service Bus

The communications service bus is essentially provided by web services, but can use other

interface protocols. The primary responsibilities of the service bus are to provide:

 Basic communications infrastructure to connect service consumers with service

providers.

 Dynamic Discovery to allow service providers to register their ability to provide specific

services and to allow service consumers to find them.

The best practice for all communications is to use pure XML. Using the XML standard

increases the potential for asset reuse and ensures compatibility with most, if not all, types of

services.

11.3.2 Foundation Services

The foundation services provide common capabilities that are used in the construction of

business services, independent of any business domain. Overall, these services include:

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 105 11/24/201

 XML capabilities - these include: Message Formatting, Message Parsing and Data

Transformation.

 Registry – Although the registry is often physically provided by the communications

bus, it is usually packaged as an infrastructure service to provide location independence.

 BPM / Orchestration – the business process management service provides a mechanism

for defining and executing business process models that create higher level business or

enterprise services from lower level process and services.

 Coordination and Transactions – provide the capabilities to coordinate multiple

services together into an atomic unit of work.

 Rules - allows business rules to be expressed by business analysts, independent of code,

and then applied to different processing scenarios. Rules are externalized and can be

updated easily and frequently. For example, business rules can be used to implement

regulatory requirements that vary widely by state or country and are subject to constant

revision.

 Personalization – Provides the storage and retrieval of information relating to service

consumers for the purpose of ‗personalizing‘ their interaction with service and the

enterprise.

 Configuration - provides a common mechanism for defining, storing and retrieving

application configuration information. Enables applications to share common

configuration parameters.

 Logging and Auditing - provides common mechanisms for logging information and

errors and auditing actions. The services may also provide common utilities for reading

and reporting on logs and audit trails. In addition to the benefits of reduced development

and operations costs, common logging and auditing allows information from business

services that span several systems to be correlated.

 Service Level Agreements (SLA) – provide capabilities that allow services to define,

monitor and measure quality-of-service characteristics such as throughput, performance

and availability.

11.3.3 Data Integration

The data integration framework provides a standard way (i.e., an Enterprise Data Strategy) to

aggregate and transform information that is collected from a variety of existing enterprise data

sources and used by business and enterprise services. This includes:

 Data Transformation - provides a metadata-driven mechanism for transforming data

from one format to another. A GUI interface is usually provided to a ‗transformation

designer‘ tool that can be used to define the data mappings.

 Data Aggregation – provides a mechanism for combining data from multiple sources

into a single, new entity.

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 106 11/24/201

 Operational Data Store (ODS) – provides run-time access to the aggregated and

transformed data. It is used primarily by the enterprise business processes and business

services. The ODS may be real, or virtual.

 Data Warehouse – database geared towards business intelligence requirements,

integrating data from various operational systems and typically loaded/updated at regular

intervals.

 Data Mart – small version or subset of a Data Warehouse.

11.3.4 Application Integration

Successful SOA implementations over the years have shown that providing a service-based

interface to existing applications leads to more flexible and cost-effective integration than

traditional point-to-point EAI solutions. DOI relies on EAI technology to provide the application

integration capabilities. This requires the following components.

 Application Adapters – translate between the native communications mechanism of the

application and the communication mechanism of the target system, in this case SOA.

 Format Handlers – provide standard mechanisms for handling the different data transfer

formats. In many systems, fairly rudimentary methods are used to transfer data and

initiate requests, including file transfer, ftp, batch, etc.

11.3.5 Management

All enterprise systems need to be managed and that includes SOA based applications. However,

the scope of SOA is frequently much larger than the scope of single applications, and the issues

of management need to be addressed in the architecture and the platform. In particular:

 Run time management – provides mechanisms for managing services including starting,

stopping, failing over, collecting statistics, determining version information, etc.

 Contract / SLA performance – provides a mechanism for managing the contract and

service level agreements associated with specific services and consumers. An SLA is an

important concept for managing performance, but it is fairly useless if it cannot be

measured, enforced and reported on.

 Metadata management – provides a mechanism for managing the metadata artifacts

associated with many different technologies and infrastructure services. In addition, it

allows the relationships between metadata to be managed and exploited.

 Metrics collection – provides a mechanism for defining metrics and collecting the data

associated with them. DOI has specific business and IT goals; it needs the capabilities to

actually measure performance against those goals.

 Reporting – provides flexible mechanisms for the generation of reports related to the

different areas of management.

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 107 11/24/201

11.3.6 Development

Last, but not least, is the actual development of services and enterprise processes within the

context of DOI and SOA. The following facilities are required:

 Enterprise Architecture – defines the context, scope and relationships of applications,

services, information, technology and infrastructure for DOI. This viewpoint is necessary

in order to achieve the goals of independently developed services that can be combined to

create higher-level business value. In particular, the business and information aspects of

the enterprise architecture are required to direct the design of specific services and

entities.

 Schema Editor – provides a visual tool for the creation of XML schema that is used to

define the format of service messages.

 Transformation Editor – provides a visual tool to map the transformation of data from

one format to another.

 Interface Designer – provides a higher-level paradigm for specifying service interfaces.

The necessary infrastructure-level artifacts are then generated from the interface design.

 Process Designer – provides a visual tool for the definition of business processes, which

are executed using the orchestration or BPM facility.

 Reuse Repository – provides a design time mechanism for publishing services and their

related artifacts, searching and finding services, managing service lifecycles and

managing and measuring service usage. A fundamental objective of SOA is the creation

and reuse of services. However, reuse doesn‘t just happen, it needs to be managed and

facilitated. Note that the runtime requirements of service publication and discover (as

implemented by the registry) are significantly different than the design time requirements

for service lifecycle management. A reuse repository should be incorporated into the

development environment for DOI.

11.4 Enterprise Capabilities

The maturity model hinted at a requirement for enterprise capabilities to support an SOA

initiative. This section list the key capabilities needed for a successful SOA program at DOI:

 Architecture - We have discussed SOA in depth already. However, since it is key to

achieving an SOA, we list it as a required capability.

 Reuse repository and program – Reuse of services is absolutely essential to SOA at

DOI. But we have learned through painful experience that reuse doesn‘t just happen by

itself. It needs to be carefully managed. Exhibit 11-4 illustrates the following issues that

have to be considered for an effective reuse initiative.

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 108 11/24/201

Exhibit 11-4: Major Issues of a Service Reuse Program

How do I

build them

How do I

use one in

my project

What is a

reusable

service

How is the full

lifecycle

supported

What is the

run-time

infrastructure

What tools

and processes

are needed

How will it

be measured

What services

exist or support

the enterprise

 What services already exist – A repository of services is essential. The repository

needs to support the development time activities of searching for a services and

determining if the service is appropriate. This is not the same as a runtime (UDDI)

repository. There are several major repository products available that support the

RAS.

 What is, and is not reusable – A lot of business functionality can be structured as

services, but not everything should be implemented as a reusable service. The

architecture needs to clearly define what is and isn‘t reusable and provide developers

with guidance on making these decisions.

 How to use reusable services – It must be clear how services should be used in an

application (e.g. what standard features they have, what required interactions there

are, etc.)

 How to build reusable services – The architecture must define the structure of a

reusable service and how to build one.

 How to evolve and maintain services – The reuse program must describe the

complete lifecycle of services.

 How will service reuse and quality be measured – Metrics need to be defined,

collected and reported on as part of the reuse initiative.

 The application infrastructure required to support services – A service is useless

by itself. Rather, it is designed to fit into a specific environment. This environment

(infrastructure) and the services provided by it must be described by the architecture.

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 109 11/24/201

 The development environment / frameworks / infrastructure / tools required to

support service reuse – It is not enough to describe what reusable artifacts are, the

architecture must enable the easy and efficient creation of those artifacts.

 The metrics for measuring program success – Reuse is only effective if it meets

the business goals that drive the reuse program. The architecture must choose metrics

to demonstrate those goals and a method for collecting the metrics.

 How will versioning work – Although this is part of the lifecycle, it is difficult and

important enough to call out separately. There will be multiple versions of services.

Both policy and infrastructure need to be in place to support it.

 Service Taxonomy - The taxonomy is based on the roles and responsibilities that

different services exhibit, and maps directly to the business model. The taxonomy

helps developers of services understand how their functions fit into the big picture

and help minimize redundancy of responsibility. The taxonomy also helps consumers

of services understand what set of overall services exist and the patterns of

application construction that are easily supported. In addition, the taxonomy suggests

a hierarchy of services. The service taxonomy should be based on the service model

being developed for the eGov project.

 Metrics – Metrics must be in place to measure the SOA initiative. This includes:

 Defining metrics to measure the goals and issues of SOA value, adoption,

performance, etc.

 Having a mechanism to incorporate metrics into service implementations, both at the

runtime and development levels

 Having a mechanism to collect and report on metrics

 Using the metrics to drive a program of continuous improvement

 Service Management – As with any other enterprise systems, management and

operations are extremely important. SOA will introduce new requirements into the

management systems at DOI. These systems must be able to provide answers to the

following questions:

 Are your services up and running?

 Are the right consumers accessing the right services?

 What are the usage and performance characteristics?

 Are you providing the required quality of service?

 How do you fix things when something goes wrong?

 How do you specify policies and characteristics?

 How do you provide graceful upgrades?

 Service Level Agreement monitoring and reporting – Service level agreements

provide an important way to manage and insure Quality of Service. The implementation

of SLA at DOI should include:

 Defining the technical performance characteristic of services, such as up-time,

response time, and throughput

 Defining business related performance metrics for services

 Having a mechanism to incorporate SLA metrics into service implementations

 Having a mechanism to collect and report on SLAs

 Notification (runtime and reporting) when performance falls near or below required

SLA levels.

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 110 11/24/201

 Proactive runtime intervention to ensure SLAs

 Service Oriented Integration Center Of Excellence (SOI CoE) – The SOI CoE

provides a centralized group that specializes in the intricacies of integration. The SOI

CoE is responsible for:

 Creating an enterprise wide integration infrastructure as part of the overall DOI

technical infrastructure

 Keeping the integration aspects of the TAA up to date

 Implementation support and assistance

 Lifecycle management of common integration services

 Facilitating reuse of integration components

11.5 SOA / ESB Patterns5

IBM ESB usage patterns provide a means for describing and defining interactions and

component topologies at the system or solution level and help us to see how and where the

abstract concepts that we have been describing can be applied to specific implementation

scenarios. Patterns enable and facilitate the implementation of successful solutions through the

reuse of components and solution elements from proven successful experiences. IBM's patterns

for e-business provide one such example and, with specific relevance to the ESB, introduce a set

of collaboration patterns that design or describe broad organizational relationships among

applications and a set of interaction patterns that describe required behavior in greater detail.

The fundamental concept in this case is that of the broker application pattern, in which

distribution rules are separated from applications, enabling great flexibility in the distribution of

requests and events and reducing the proliferation of point-to-point connections, thereby

simplifying the management of the network and system. This basic pattern appears in several

variations, and we will briefly consider each of these variations in this section.

5
 http://researchweb.watson.ibm.com/journal/sj/444/schmidt html

http://researchweb.watson.ibm.com/journal/sj/444/schmidt.html

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 111 11/24/201

11.5.1 Service- and Event-Routing Pattern

A request or event is distributed to at most one of multiple target providers (see Exhibit 11-5).

Examples may include simple service selection based on context or the content of the request or

on more complex models, in which service requests can be routed to particular systems based on

availability, workload, or detection of error situations. Service selection may involve the lookup

of appropriate service providers in a service registry.

Exhibit 11-5: Service- and Event-Routing Pattern

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 112 11/24/201

11.5.2 Protocol Switch Pattern

A routing pattern in which requestors and providers use differing network protocols (see Exhibit

11-6). Examples may include simple mapping of SOAP/HTTP requests onto a more reliable

SOAP/JMS infrastructure or mapping between JMS and non-JMS applications.

Exhibit 11-6: Protocol Switch Pattern

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 113 11/24/201

11.5.3 Proxy or Gateway Pattern

A variant of the routing pattern (or protocol switch) which maps service interfaces or endpoints,

he proxy may also support dTSRAggregation (and subsequent

reaggregation) of a single request into multiple component subrequests. Examples of this pattern

include service portals, in which a single point of contact is provided for multiple services and

the details of ―internal‖ services may be hidden from the service requestors.

Exhibit 11-7: Proxy or Gateway Pattern

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 114 11/24/201

11.5.4 Event Distribution Pattern

Events may be distributed to more than one target provider, based on a list of interested parties

that is managed by the ESB (see Exhibit 11-8). Services that wish to be notified of such events

may be able to add themselves to the interested-parties list. An example of this pattern would be

the distribution of business events based on CBE through the common event infrastructure.

Exhibit 11-8: Event Distribution Pattern

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 115 11/24/201

11.5.5 Service Transformation Pattern

Requestors and providers use different service interfaces, and the ESB provides the necessary

translation (see Exhibit 11-9). This pattern exposes new service interfaces without requiring

change or modification to an existing application or service. It may also be used when multiple

providers support the same business function but provide different interfaces, allowing this

difference to be hidden from the service requestor.

Exhibit 11-9: Service Transformation Pattern

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 116 11/24/201

11.5.6 Matchmaking Pattern

Another variant of the service routing pattern in which suitable target services are discovered

dynamically based on a set of policy definitions (see Exhibit 11-10). This pattern is used in very

dynamic environments where there are many hundreds or even thousands of services attached to

the ESB, and service implementations may or may not be available when any given request is

issued.

Exhibit 11-10: Matchmaking Pattern

These basic interaction patterns may also be used in conjunction with process-oriented

interaction patterns. A process or workflow definition (defined by using BPEL or some

equivalent language) extends the broker interaction pattern by orchestrating the execution

sequence for a number of service interactions. By using these two patterns together, the service

that orchestrates the interaction pattern can focus exclusively on business-process requirements,

delegating issues of matchmaking, routing, and service selection to the ESB infrastructure.

 DOI Target Solution Reference Architecture

11/24/201

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 118 11/24/201

11.6.4 SOA Policy Management

When constructing an SOA, the notion of policy should be a starting point in understanding how

an organization functions both internally and externally.

bottom-up.

Recommendations:

 SOA policy governance

 Compliance management and enforcement

 Safe and secure cryptography

 Application-level audits

11.6.5 Additional SOA Security Best Practices

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 119 11/24/201

11.7 Governance and Organization

An organizational and governance structure needs to be put in place to manage the SOA

program. Governance should be structured around the following questions:

 Goals – What are the goals that SOA and particularly governance are trying to achieve?

 Stakeholders – Who will participate in the process? What are the roles and

responsibilities?

 Processes – What are the processes, structures, organizational units, meeting, templates,

etc. necessary for governance to operate efficiently?

The primary responsibilities of the governance are:

 Service Lifecycle Processes – Define processes for how to propose, implement, deploy,

enhance, maintain, version and retire a service?

 Service Ownership – Define responsibilities for who owns (has responsibility for) a

service?

 Service Funding – Define mechanisms for how service lifecycle phases funded?

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 120 11/24/201

 Decision and Issue Resolution – Define who is responsible for making certain decisions?

How are issues resolved? How are issues escalated and appealed?

 Conformance – Define processes for how conformance to standards (design, technical) is

verified?

The thrust of governance should be to help applications conform to the architecture. Experience

has shown that a proactive approach is generally more effective than a purely compliance based

approach. This can be accomplished through the use of standard templates and conformance

questionnaires. But, DOI can go much farther than that. Providing examples of application

design that conform to the architecture and standards is one approach. The most effective

approach is to provide application architecture assistance to projects to help them during the

design phase to understand the architecture and develop conforming designs.

Last but not least, the thorny issue of Funding must be resolved.

 Who pays for service development?

 Who pays for enhancements?

 Who pays for maintenance and operations?

Although there is not a simple answer to funding, experience has shown that complex, charge

back methods are generally not that successful, especially during the initial rollout phases of an

SOA. If at all possible, the cost for the services should be covered by a central group. Initially,

use of services should be free to encourage adoption of SOA.

11.8 SOA Governance Best Practices6

Industry leaders have found that to improve the successful implementation of SOA, there is a

requirement to develop SOA Governance early in the process. SOA services require improved

governance to maintain the level of control needed to support the new Business/IT joint

environment. The values provided by SOA Governance are:

 Realization of the business benefits of SOA

 Provides business process flexibility

 Improved time to market

 Mitigation of business risk

 Maintaining quality of service

 Consistency of service

SOA governance enforces the use of discipline to maintain consistency and relevance within the

SOA life cycle. SOA governance tries to bridge the gap between business and IT by allowing

traceability from business goals down to services and key performance indicators (KPIs) for

measuring the results of those services. SOA governance also needs to keep a constant

6
 http://www-306.ibm.com/software/solutions/soa/gov/

http://www-306.ibm.com/software/solutions/soa/gov/

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 121 11/24/201

connection between business and IT through the concept of domain ownership. It is the

responsibility of the members of the SOA governance council to logically partition the enterprise

into a set of managed business services that share a common business context. Business owners

and IT owners of a business domain are responsible for maintaining the applications that support

the business domain's exposed business services. They are also responsible for maintaining and

monitoring the SLAs of their existing business services as well as negotiating SLAs between

different domains. The provisioning of metadata for enterprise business services is critical to

both business and IT users. The metadata can provide information like WS-* compliance,

business criticality, and so on. Based on the metadata, the business services can be monitored

and managed. This is also a key responsibility of the members of the SOA governance council.

To ensure that services are not redundant and that they are relevant to business goals across the

organization, the governance body should enforce coordination between new services and the

existing services across the organization. This can be done by conducting periodic workshops

with the LOB stakeholders to identify business application needs; after proper analysis, the

governance body can add the business needs to the candidate business requirement portfolio.

This can be followed by a series of business value assessment workshops wherein the identified

candidates are passed through a business value indicator (BVI) litmus test to qualify a candidate

business requirement as a service to be subsequently implemented and maintained.

The governance body is empowered with the responsibility of developing IT policies and

oversees its compliance in the business applications that are designed and implemented. It should

be a continuous exercise for the governance body to identify business processes that are critical

either from a strategic differentiator perspective or for business process consolidation and

optimization, or even just to stay competitive in the market. Any implementation of governance

should be centered on the four pillars of an enterprise architecture: people, processes,

technology, and services. One mechanism to implement an enterprise IT and SOA governance is

by establishing a center of excellence (CoE) for IT and SOA governance that would enable a

shared resource and capability center to function as a resource pool as new business application

needs arise.

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 122 11/24/201

Exhibit 11-11: SOA Governance

A governance implementation needs to be supported by a hierarchical organizational reporting

structure. As shown in Exhibit 11-11 above, such a reporting structure can be categorized into

the four following hierarchies.

 Sponsorship level. This essentially consists of the stakeholders in the steering committee

and is adequately represented by the members of the c-suite along with the LOB owners

and executives. The steering committee articulates the business strategy, goal, and vision

for the enterprise. Members of this level are the key decision makers on how IT

investment needs to be made and channeled to specific areas of the business that either

need business process improvement or need to implement new applications that can be

competitive market differentiators.

 Leadership level. This is composed of the leader(s) of the governance CoE and two

representatives (one business and one IT) from each business domain. (Note: Business

domains as mentioned in the previous section represent a logical grouping of business

services that share a common business context). The leadership team learns the business

strategies and visions from the sponsorship members and also obtains directives from and

reports to the steering committee. The leadership team creates enterprise IT architecture

and SOA principles that stand as over-arching rules which any application architecture

needs to conform to. The team also prioritizes which application architecture needs to be

created and ensures that the IT priorities are aligned with the business needs. The

governance body (represented by the leadership team) also documents the architecture

standards and the compliance requirements to regulatory acts. The enterprise architecture

constraints are also documented by this team, and the team is empowered with overseeing

 DOI Target Solution Reference Architecture

Chapter 11 – Appendix C – Service Oriented Architecture Roadmap 123 11/24/201

the overall compliance to the architecture standards, guidelines, principles, and

constraints when any new application needs to be designed and implemented (by teams at

the next tier going down).

 Opportunity management level. Separate teams are formed at this level each focusing

on one or more (related) business needs and are responsible to come up with clear

definitions of business applications that cater to a given enterprise business need. Each

initiative team has a business team lead responsible for gathering and formalizing the

business requirements. Corresponding IT team leads are responsible for creating the

overall application architecture and the solution that adheres to the IT and SOA principles

mandated by the governance leadership team.

 Project Management level. Teams at this level manage the entire life cycle of a typical

application design and development through the phases of solution definition, solution

outline, macro design, micro design, build, test, and deploy. Each project team is aligned

with a given initiative team. It is very common to have multiple simultaneous projects

being run under a given initiative team.

11.9 DOI Timeline

TBD – recommended timeline for the steps listed in Section 11.1.

